[luogu4768] [NOI2018] 归程 (Dijkstra+Kruskal重构树)

烈酒焚心 提交于 2020-03-06 00:56:03

[luogu4768] [NOI2018] 归程 (Dijkstra+Kruskal重构树)

题面

题面较长,这里就不贴了

分析

看到不能经过有积水的边,即不能经过边权小于一定值的边,我们想到了kruskal重构树。我们把边按海拔高度从大到小排序,然后建立一棵Kruskal重构树。

树上维护什么呢?我们除了在点上记录高度外,把最底层的点1~n的权值设为点i到1的最短路径长度,然后维护子树最小值。我们在Kruskal重构树上从v开始树上倍增,找到深度最浅的高度>=水位线的点x,这样x子树中的点都是开车可以到达的,而最小步行距离就是x子树中的点对应到原图上后,到点1的距离。

代码

//https://www.luogu.org/problem/P4768
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#define maxn 200000
#define maxm 400000
#define maxlogn 23
using namespace std;
typedef long long ll;
int t;
int n,m,q,k,s;
struct graph {
    struct edge {
        int from;
        int to;
        int next;
        int len;
        int height;
        friend bool operator < (edge p,edge q){
            return p.height>q.height;
        }
    }E[maxm*2+5]; 
    int sz=1;
    int head[maxn*2+5];
    void clear(){
        memset(head,0,sizeof(head));
        sz=1;
    }
    void add_edge(int u,int v,int l,int h){
        sz++;
        E[sz].from=u;
        E[sz].to=v;
        E[sz].next=head[u];
        E[sz].len=l;
        E[sz].height=h;
        head[u]=sz;
        sz++;
        E[sz].from=v;
        E[sz].to=u;
        E[sz].next=head[v];
        E[sz].len=l;
        E[sz].height=h;
        head[v]=sz;
    } 
}G;

struct tree{
    struct edge{
        int from;
        int to;
        int next;
    }E[(maxn+maxn)*2+5];
    int head[maxn+maxn+5];
    int sz=1;
    void clear(){
        memset(head,0,sizeof(head));
        sz=1;
    }
    void add_edge(int u,int v){
        sz++;
        E[sz].from=u;
        E[sz].to=v;
        E[sz].next=head[u];
        head[u]=sz;
        sz++;
        E[sz].from=v;
        E[sz].to=u;
        E[sz].next=head[v];
        head[v]=sz;
    }
}T; 


struct heap_node{
    ll dist;
    int id;
    heap_node(){
        
    }
    heap_node(int _id,ll _dist){
        id=_id;
        dist=_dist;
    }
    friend bool operator < (heap_node p,heap_node q){
        return p.dist>q.dist;
    }
};
int vis[maxn+5];
ll dist[maxn+5];
void dijkstra(int s){
    memset(dist,0x3f,sizeof(dist));
    memset(vis,0,sizeof(vis));
    dist[s]=0;
    priority_queue<heap_node>q;
    q.push(heap_node(s,0));
    while(!q.empty()){
        int x=q.top().id;
        q.pop();
        if(vis[x]) continue;
        vis[x]=1;
        for(int i=G.head[x];i;i=G.E[i].next){
            int y=G.E[i].to;
            if(dist[y]>dist[x]+G.E[i].len){
                dist[y]=dist[x]+G.E[i].len;
                q.push(heap_node(y,dist[y]));
            }
        }
    }
}

int newn=0;
int fa[maxn*2+5]; 
int find(int x){
    if(fa[x]==x) return x;
    else return fa[x]=find(fa[x]);
}

int log2n;
int hi[maxn*2+5];
ll dmin[maxn*2+5];
int deep[maxn*2+5];
int anc[maxn*2+5][maxlogn+5]; 
void dfs(int x,int fa){
    deep[x]=deep[fa]+1;
    anc[x][0]=fa;
    for(int i=1;i<=log2n;i++) anc[x][i]=anc[anc[x][i-1]][i-1];
    for(int i=T.head[x];i;i=T.E[i].next){
        int y=T.E[i].to;
        if(y!=fa){
            dfs(y,x);
            dmin[x]=min(dmin[x],dmin[y]);
        }
    }
}
ll query(int x,int lim){
    for(int i=log2n;i>=0;i--){
        if(anc[x][i]!=0&&hi[anc[x][i]]>lim){
            x=anc[x][i];
        }
    }
    return dmin[x];
}
void kruskal(){//建出kruskal重构树 
    newn=n;
    for(int i=1;i<=n*2;i++) fa[i]=i;
    sort(G.E+2,G.E+1+G.sz);
    for(int i=2;i<=G.sz;i++){
        int x=G.E[i].from;
        int y=G.E[i].to;
        int fx=find(x);
        int fy=find(y);
        if(fx!=fy){
            newn++;
            T.add_edge(fx,newn);
            T.add_edge(fy,newn);
            fa[fx]=newn;
            fa[fy]=newn;
            hi[newn]=G.E[i].height;
        }
    }
    log2n=log2(newn);
    memset(dmin,0x3f,sizeof(dmin));
    for(int i=1;i<=n;i++) dmin[i]=dist[i]; 
    dfs(newn,0);
}

void ini(){
    T.clear();
    G.clear();
    memset(anc,0,sizeof(anc));
    memset(deep,0,sizeof(deep));
    memset(dist,0x3f,sizeof(dist));
    memset(vis,0,sizeof(vis));
    memset(dmin,0x3f,sizeof(dmin));
}

int main() {
    freopen("return.in","r",stdin);
    freopen("return.out","w",stdout);
    int u,v,l,a;
    ll v0,p0;
    ll lastans;
    scanf("%d",&t);
    while(t--){
        scanf("%d %d",&n,&m);
        lastans=0;
        ini();
        for(int i=1;i<=m;i++){
            scanf("%d %d %d %d",&u,&v,&l,&a);
            G.add_edge(u,v,l,a);
        }
        dijkstra(1);
        kruskal();
        scanf("%d %d %d",&q,&k,&s);
        for(int i=1;i<=q;i++){
            scanf("%lld",&v0);
            v0=(v0+k*lastans-1)%n+1;
            scanf("%lld",&p0);
            p0=(p0+k*lastans)%(s+1);
            lastans=query(v0,p0);
            printf("%lld\n",lastans);
        }   
    } 
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!