PCA:
“最能代表原始数据”希望降维后的数据不能失真,也就是说,被PCA降掉的那些维度只能是那些噪声或是冗余的数据。
1:冗余,就是去除线性相关的向量(纬度),因为可以被其他向量代表,这部分信息量是多余的。
2:噪声,就是去除较小特征值对应的特征向量。
因为特征值的大小就反映了变换后在特征向量方向上变换的幅度,幅度越大,说明这个方向上的元素差异也越大,换句话说这个方向上的元素更分散。
LDA:
Fisher判别分析的思想非常朴素:给定训练样例集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能接近、不同类样例的投影点尽可能远离。在对新样本进行分类时,将其投影到同样的这条直线上,再根据新样本投影点的位置来确定它的类别。 ——周志华《机器学习》
PCA vs LDA
LDA用于降维,和PCA有很多相同,也有很多不同的地方,因此值得好好的比较一下两者的降维异同点。
首先我们看看相同点:
1、两者均可以对数据进行降维
2、两者在降维时均使用了矩阵特征分解的思想
3、两者都假设数据符合高斯分布
我们接着看看不同点:
1、LDA是有监督的降维方法,而PCA是无监督的降维方法
2、LDA降维最多降到类别数k-1的维数,而PCA没有这个限制
3、LDA除了可以用于降维,还可以用于分类
4、LDA选择分类性能最好的投影方向,而PCA选择样本点投影具有最大方差的方向
来源:CSDN
作者:.GG_Bond.
链接:https://blog.csdn.net/weixin_45484967/article/details/104625995