Description
Input
Output
Sample Input
10 10
100 100
Sample Output
2791
HINT
T = 10000
N, M <= 10000000
题解
由之前的 [HAOI 2011]Problem b :
令 $F(d)$ 为 $d\mid gcd(i,j)$ 的数对 $(i,j)$ 个数, $f(d)$ 为 $d=gcd(i,j)$ 的数对 $(i,j)$ 个数。
由题 $$F(k)=\sum_{d=1}^{min\left\{\left\lfloor\frac{a}{k}\right\rfloor,\left\lfloor\frac{b}{k} \right\rfloor\right\}}f(kd)$$
由莫比乌斯反演定理 $F(n)=\sum_{n\mid d} f(d)\Rightarrow f(n)=\sum_{n\mid d} \mu(\frac{d}{n})F(d)$
\begin{aligned}\Rightarrow f(k)&=\sum_{d=1}^{min\left\{\left\lfloor\frac{a}{k}\right\rfloor,\left\lfloor\frac{b}{k}\right\rfloor\right\}}\mu(d)F(kd)\\&=\sum_{d=1}^{min\left\{\left\lfloor\frac{a}{k} \right\rfloor,\left\lfloor\frac{b}{k}\right\rfloor\right\}}\mu(d)\cdot\left\lfloor\frac{a}{kd}\right\rfloor\cdot\left\lfloor\frac{b}{kd}\right\rfloor\end{aligned}
显然对于此题 \begin{aligned}ans&=\sum_{isprime(p)}^{min\{a,b\}}\sum_{d=1}^{min\left\{\left\lfloor\frac{a}{p}\right\rfloor,\left\lfloor\frac{b}{p}\right\rfloor\right\}}\mu(d)\cdot\left\lfloor\frac{a}{pd}\right\rfloor\cdot\left\lfloor\frac{b}{pd}\right\rfloor\\&=\sum_{d=1}^{min\{a,b\}}\sum_{isprime(p)}^{min\left\{\left\lfloor\frac{a}{d}\right\rfloor,\left\lfloor\frac{b}{d}\right\rfloor\right\}}\mu(d)\cdot\left\lfloor\frac{a}{pd}\right\rfloor\cdot\left\lfloor\frac{b}{pd}\right\rfloor\end{aligned}
我们试着枚举 $pd$ $$ans=\sum_{pd=1}^{min\{a,b\}}\left\lfloor\frac{a}{pd}\right\rfloor\cdot\left\lfloor\frac{b}{pd}\right\rfloor\cdot\sum_{isprime(p')\wedge p'\mid(pd)}\mu\left(\frac{pd}{p'}\right)$$
我们令 $F(pd)=\sum_{isprime(p')\wedge p'\mid(pd)}\mu\left(\frac{pd}{p'}\right)$ $$ans=\sum_{pd=1}^{min\{a,b\}}F(pd)\cdot\left\lfloor\frac{a}{pd}\right\rfloor\cdot\left\lfloor\frac{b}{pd}\right\rfloor$$
只要我们预处理出 $F$ 的前缀就可以用数论分块来做了。
预处理 $F$ 我们可以线性筛后枚举质数求(详见代码)。
1 //It is made by Awson on 2018.1.22 2 #include <set> 3 #include <map> 4 #include <cmath> 5 #include <ctime> 6 #include <queue> 7 #include <stack> 8 #include <cstdio> 9 #include <string> 10 #include <vector> 11 #include <cstdlib> 12 #include <cstring> 13 #include <iostream> 14 #include <algorithm> 15 #define LL long long 16 #define Abs(a) ((a) < 0 ? (-(a)) : (a)) 17 #define Max(a, b) ((a) > (b) ? (a) : (b)) 18 #define Min(a, b) ((a) < (b) ? (a) : (b)) 19 #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b)) 20 #define writeln(x) (write(x), putchar('\n')) 21 #define lowbit(x) ((x)&(-(x))) 22 using namespace std; 23 const int N = 10000000; 24 void read(int &x) { 25 char ch; bool flag = 0; 26 for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar()); 27 for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar()); 28 x *= 1-2*flag; 29 } 30 void write(LL x) { 31 if (x > 9) write(x/10); 32 putchar(x%10+48); 33 } 34 35 int F[N+5], a, b; 36 int isprime[N+5], prime[N+5], tot = 0, mu[N+5]; 37 38 void get_F() { 39 memset(isprime, 1, sizeof(isprime)); isprime[1] = 0, mu[1] = 1; 40 for (int i = 2; i <= N; i++) { 41 if (isprime[i]) prime[++tot] = i, mu[i] = -1; 42 for (int j = 1; j <= tot && i*prime[j] <= N; j++) { 43 isprime[i*prime[j]] = 0; 44 if (i%prime[j]) mu[i*prime[j]] = -mu[i]; 45 else {mu[i*prime[j]] = 0; break; } 46 } 47 } 48 for (int i = 1; i <= tot; i++) for (int j = 1, p = prime[i]; j*p <= N; j++) F[j*p] += mu[j]; 49 for (int i = 1; i <= N; i++) F[i] += F[i-1]; 50 } 51 LL cal(int a, int b) { 52 if (a > b) Swap(a, b); LL ans = 0; 53 for (int i = 1, last; i <= a; i = last+1) { 54 last = Min(a/(a/i), b/(b/i)); 55 ans += (LL)(F[last]-F[i-1])*(a/i)*(b/i); 56 } 57 return ans; 58 } 59 void work() { 60 read(a), read(b); writeln(cal(a, b)); 61 } 62 int main() { 63 int t; read(t); get_F(); 64 while (t--) work(); 65 return 0; 66 }
当然我们也可以利用函数 $F$ 的积性。线性筛的过程就把 $F$ 筛出来。设枚举的数为 $i$ ,质数为 $p$ :
1. $p\mid i$ , $F(ip)=\mu(i)$ ;
2. $p\nmid i$ , $F(ip)=\mu(i)-F(i)$ 。
1 //It is made by Awson on 2018.1.23 2 #include <set> 3 #include <map> 4 #include <cmath> 5 #include <ctime> 6 #include <queue> 7 #include <stack> 8 #include <cstdio> 9 #include <string> 10 #include <vector> 11 #include <cstdlib> 12 #include <cstring> 13 #include <iostream> 14 #include <algorithm> 15 #define LL long long 16 #define Abs(a) ((a) < 0 ? (-(a)) : (a)) 17 #define Max(a, b) ((a) > (b) ? (a) : (b)) 18 #define Min(a, b) ((a) < (b) ? (a) : (b)) 19 #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b)) 20 #define writeln(x) (write(x), putchar('\n')) 21 #define lowbit(x) ((x)&(-(x))) 22 using namespace std; 23 const int N = 10000000; 24 void read(int &x) { 25 char ch; bool flag = 0; 26 for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar()); 27 for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar()); 28 x *= 1-2*flag; 29 } 30 void write(LL x) { 31 if (x > 9) write(x/10); 32 putchar(x%10+48); 33 } 34 35 int n, m; LL F[N+5]; 36 int isprime[N+5], prime[N+5], tot, mu[N+5]; 37 38 void get_F() { 39 memset(isprime, 1, sizeof(isprime)); isprime[1] = 0; mu[1] = 1; 40 for (int i = 2; i <= N; i++) { 41 if (isprime[i]) prime[++tot] = i, mu[i] = -1, F[i] = 1; 42 for (int j = 1; j <= tot && i*prime[j] <= N; j++) { 43 isprime[i*prime[j]] = 0; 44 if (i%prime[j]) mu[i*prime[j]] = -mu[i], F[i*prime[j]] = mu[i]-F[i]; 45 else {mu[i*prime[j]] = 0, F[i*prime[j]] = mu[i]; break; } 46 } 47 F[i] += F[i-1]; 48 } 49 } 50 LL cal(int n, int m) { 51 if (n > m) Swap(n, m); LL ans = 0; 52 for (int i = 1, last; i <= n; i = last+1) { 53 last = Min(n/(n/i), m/(m/i)); 54 ans += (LL)(F[last]-F[i-1])*(n/i)*(m/i); 55 } 56 return ans; 57 } 58 void work() { 59 read(n), read(m), writeln(cal(n, m)); 60 } 61 int main() { 62 int t; read(t); get_F(); 63 while (t--) work(); 64 return 0; 65 }
来源:https://www.cnblogs.com/NaVi-Awson/p/8327513.html