KNN算法--python实现

江枫思渺然 提交于 2020-02-28 05:37:40

1.KNN算法作为分类的算法,也被成为k近邻算法。
2.KNN算法的核心思想是新增一个样本在特征空间中,k个最近的样本大多数是 一类的,那么这个样本也属于这一类。
在这里插入图片描述
这里我们利用欧拉公式计算样本间的距离。
在这里插入图片描述

import math

import numpy as np

from sklearn import datasets
import matplotlib.pyplot as plt

raw_data_X = [[3.393533211, 2.331273381],
              [3.110073483, 1.781539638],
              [1.343808831, 3.368360954],
              [3.582294042, 4.679179110],
              [2.280362439, 2.866990263],
              [7.423436942, 4.696522875],
              [5.745051997, 3.533989803],
              [9.172168622, 2.511101045],
              [7.792783481, 3.424088941],
              [7.939820817, 0.791637231]
             ]
raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

X_train = np.array(raw_data_X)
y_train = np.array(raw_data_y)


首先,我们将建立数据,然后将数据转换成numpy数组。

plt.scatter(X_train[y_train == 0,0],X_train[y_train == 0,1],color = 'g')
plt.scatter(X_train[y_train == 1,0],X_train[y_train == 1,1],color = 'r')
plt.show()

然后利用matplotlib画出相应的散点图。
在这里插入图片描述
然后,插入一个新的点。

x = np.array([8.093607318, 3.365731514])

plt.scatter(X_train[y_train == 0,0],X_train[y_train == 0,1],color = 'g')
plt.scatter(X_train[y_train == 1,0],X_train[y_train == 1,1],color = 'r')
plt.scatter(x[0],x[1],color = 'b')
plt.show()

在这里插入图片描述
利用欧拉距离公式,判定新的点,为哪一类。
我们将最近的六个点的距离组为判定依据。

distances = []

for x_train in X_train:
    d = sqrt(np.sum((x_train - x)**2))
    distances.append(d)

nearest = np.argsort(distance)

c = [y_train[k] for k in nearest[:6]]

输出c为:
在这里插入图片描述
可知,将新的数据点判定为1.
如果数据点多的话,也可利用collections.

from collections import Counter

vote = Counter(c)
vote.most_common()

输出为
在这里插入图片描述

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!