Brier分数与概率校准

我是研究僧i 提交于 2020-02-27 18:27:53

https://www.cnblogs.com/sddai/p/9581142.html

 

3.Brier分数

       在说概率校准前,先说下Brier分数,因为它是衡量概率校准的一个参数。

       简单来说,Brier分数可以被认为是对一组概率预测的“校准”的量度,或者称为“ 成本函数 ”,这一组概率对应的情况必须互斥,并且概率之和必须为1.

       Brier分数对于一组预测值越低,预测校准越好。

       其求解公式如下:(此公式只适合二分类情况,还有原始定义公式)

       

     其中

  是预测的概率,事件t的实际概率(如果不发生则为0),而N是预测事件数量。

     引用维基百科的一个例子说明 Brier分数的计算方式:   

     假设一个人预测在某一天会下雨的概率P,则Brier分数计算如下:
          如果预测为100%(P = 1),并且下雨,则Brier Score为0,可达到最佳分数。
          如果预测为100%(P = 1),但是不下雨,则Brier Score为1,可达到最差分数。
          如果预测为70%(P = 0.70),并且下雨,则Brier评分为(0.70-1)2 = 0.09。
          如果预测为30%(P = 0.30),并且下雨,则Brier评分为(0.30-1)2 = 0.49。
          如果预测为50%(P = 0.50),则Brier分数为(0.50-1)2 =(0.50-0)2 = 0.25,无论是否下雨。

4.概率校准

          概率校准就是对分类函数做出的分类预测概率重新进行计算,并且计算Brier分数,然后依据Brier分数的大小判断对初始预测结果是支持还是反对。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!