HP 2114/15/16 floating point conversion

生来就可爱ヽ(ⅴ<●) 提交于 2020-02-25 04:39:08

问题


I have some files with floating point values in them that I'm having problems figuring out their exact encoding. I've tried several ways to convert to a standard double value, but haven't had much luck. I know what the values are supposed to convert to, but need a method to extract directly from the files.

These are HP-1000 (HP21xx) series floating point values. Similar to 48 bit Pascal, but not the same.

Other than some old, unreliable documentation (couldn't get a conversion using what it claimed was the format), and a list of formats from quadibloc.com I have found nothing else. Format from quadibloc gives the following:

(Note, big-endian order)

MSb: mantissa sign (says it's 2s complement)

39 bits: mantissa

7 bits: exponent

1 bit: exponent sign

The other documentation isn't clear, but seems to say it's all 2s complement. I've tried the Pascal conversion code I found, but it doesn't even come close. (after moving the exponent sign to high bit of the byte).

Examples, converted using a PPC that emulates an HP-1000:

A7EB851EB90A    -22.02

A870A3D70A0A    -21.89

A8AE147AE20A    -21.83

A8E147AE140A    -21.78

A9666666670A    -21.65

AC70A3D70A0A    -20.89

ACC28F5C290A    -20.81

ACCCCCCCCC0A    -20.8

AE70A3D70B0A    -20.39

AEB851EB850A    -20.32

This was from only one file. I have at least 100 of these files to extract from.

Any ideas? Sure would be appreciated.

Edit: I guess I should have said what language I am working in. In this case, it's C#. As for additional data, I have a ton of it. More examples here, these include negative exponents, at least when converted to decimal.

400000000002    1
43851EB85204    2.11
451EB851EB04    2.16
4C7AE147AE04    2.39
4EC4EC4EC5F3    4.8076923077E-03
519999999A04    2.55
5838B6BE9BF3    5.3846153846E-03
5B851EB85202    1.43
5BD70A3D7108    11.48
5C7AE147AE08    11.56
5E51EB851E08    11.79
5FD70A3D7108    11.98
62E147AE1508    12.36
64A3D70A3E08    12.58
666666666702    1.6
67AE147AE202    1.62
6B204B9E54F3    6.5384615385E-03
733333333302    1.8
762762762AF3    7.2115384616E-03
794DFB4619F3    7.4038461538E-03
7C74941627F3    7.5961538465E-03
7E07E07E14F3    7.6923076925E-03

Should have included positive numbers before.

Tried the suggestions, but in C#. Wildly different results. I even split out the bits of the calculations, but I get very high numbers compared to the numbers given in the suggestions. Here's the code with the bits expanded.

    Int64[] test_data = new Int64[] {
        0xA7EB851EB90A, 0xA870A3D70A0A, 0xA8AE147AE20A, 0xA8E147AE140A,
        0xA9666666670A, 0xAC70A3D70A0A, 0xACC28F5C290A, 0xACCCCCCCCC0A,
        0xAE70A3D70B0A, 0xAEB851EB850A, 0x400000000002, 0x43851EB85204,
        0x451EB851EB04, 0x4C7AE147AE04, 0x4EC4EC4EC5F3, 0x519999999A04,
        0x5838B6BE9BF3, 0x5B851EB85202, 0x5BD70A3D7108, 0x5C7AE147AE08,
        0x5E51EB851E08, 0x5FD70A3D7108, 0x62E147AE1508, 0x64A3D70A3E08,
        0x666666666702, 0x67AE147AE202, 0x6B204B9E54F3, 0x733333333302,
        0x762762762AF3, 0x794DFB4619F3, 0x7C74941627F3, 0x7E07E07E14F3
    };

    private void Checkit()
    {
        Byte[] td = new Byte[6];                        // 6 byte array for reversed data
        Byte[] ld = new Byte[8];                        // 8 byte conversion array

        for (Int32 i = 0; i < test_data.Length; i++)    // Loop through data
        {
            ld = BitConverter.GetBytes(test_data[i]);   // Get value as byte array
            for (Int32 j = 0; j < 6; j++)               // Copy the bytes in reverse
                td[5 - j] = ld[j];
            // Go test them
            Console.WriteLine("{0:X6}  --> {1:E}", test_data[i], Real48ToDouble(ref td));
        }
    }

    Double Real48ToDouble(ref Byte[] realValue)
    {
        // Values are using input value of A7EB851EB90A and 7E07E07E14F3
        if (realValue[0] == 0)
            return 0.0;                                     // Null exponent = 0

        Byte[] b = new Byte[8] { 0, 0, 0, 0, 0, 0, 0, 0 };  // 64 bit byte array
        for (Int32 i = 0; i < 5; i++)                       // Copy over the 48 bit info
            b[4 - i] = realValue[i];

        Int64 mant = BitConverter.ToInt64(b, 0);            // 0x000000A7EB851EB9 - Get mantissa with sign
                                                            // 0x0000007E07E07E14
        Int32 expo = realValue[5];                          // 0x0000000A - Grab the exponent
                                                            // 0x000000F3
        Int32 mant_sign = (Int32)(mant >> 39);              // 0x00000001
                                                            // 0x00000000

        // sign extend mantissa from 40 to 64 bits, then take absolute value
        mant = (Int64)((mant ^ (1L << 39)) - (1L << 39));   // 0xFFFFFFA7EB851EB9 - First calc
                                                            // 0x0000007E07E07E14
        mant = Math.Abs(mant);                              // 0x00000058147AE147 - Make absolute
                                                            // 0x0000007E07E07E14

        // convert mantissa to floating-point
        Double fmant = mant * Math.Pow(2, -39.0);           // 0.68812499999876309 - Second calc
                                                            // 0.98461538463743636
        // rotate exponent field right by 1 bit
        expo = (expo >> 1) | ((expo & 1) << 7);             // 0x00000005
                                                            // 0x000000F9
        // sign extend exponent from 8 to 32 bits
        expo = ((expo ^ (1 << 7)) - (1 << 7));              // 0x00000005
                                                            // 0xFFFFFFF9

        // compute scale factor from exponent field
        Double scale = Math.Pow(2, expo);                   // 32.0 - Scale
                                                            // 0.0078125

        // scale mantissa, and apply sign bit for final result
        Double num = fmant * scale;                         // 22.019999999960419 - Make the final abs number
                                                            // 0.0076923076924799716

        return (mant_sign != 0) ? (-num) : num;             // -22.019999999960419 - Return with sign
                                                            // 0.0076923076924799716
    }

Changed code above The code above is now working correctly.


回答1:


An article in Hewlett-Packard Journal, October 1978, pg. 14 gives the following information about the floating-point format used here:

Extended-precision numbers have a 39-bit signed mantissa and the same seven-bit signed exponent. All mantissas are normalized, which means they are in the ranges [½, 1) and [-1, -½).

Considered together with the information in the question this means the mantissa is a signed, two's-complement, 40-bit integer represented by the first five bytes, and must be divided by 239 to get its numerical floating-point value.

The binary exponent is stored in the last byte. Based on the description of the 40-bit mantissa field as a 39-bit mantissa in the journal article, while the exponent is described a having seven bits, together with information on the exponent sign bit from the question, it appears that the exponent is a signed, two's-complement 8-bit integer, which has been rotated left by one bit so that its sign bit winds up in bit [0] of the exponent byte. To process it, we need to rotate right one bit.

Based on the above information, I wrote the following C99 program that successfully decodes the test vectors from the question:

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <math.h>

int64_t test_data [] =
{
    0xA7EB851EB90A, 0xA870A3D70A0A, 0xA8AE147AE20A, 0xA8E147AE140A,
    0xA9666666670A, 0xAC70A3D70A0A, 0xACC28F5C290A, 0xACCCCCCCCC0A,
    0xAE70A3D70B0A, 0xAEB851EB850A, 0x400000000002, 0x43851EB85204,
    0x451EB851EB04, 0x4C7AE147AE04, 0x4EC4EC4EC5F3, 0x519999999A04,
    0x5838B6BE9BF3, 0x5B851EB85202, 0x5BD70A3D7108, 0x5C7AE147AE08,
    0x5E51EB851E08, 0x5FD70A3D7108, 0x62E147AE1508, 0x64A3D70A3E08,
    0x666666666702, 0x67AE147AE202, 0x6B204B9E54F3, 0x733333333302,
    0x762762762AF3, 0x794DFB4619F3, 0x7C74941627F3, 0x7E07E07E14F3
};
#define NBR_TEST_VECTORS (sizeof(test_data) / sizeof(int64_t))

int main (void)
{
    for (int i = 0; i < NBR_TEST_VECTORS; i++) {

        // extract mantissa and exponent bits
        int64_t mant = test_data[i] >> 8;
        int expo = test_data[i] & 0xFF;
        int mant_sign = mant >> 39;

        // sign extend mantissa from 40 to 64 bits, then take absolute value
        mant = ((mant ^ (1LL << 39)) - (1LL << 39));
        mant = llabs (mant);

        // convert mantissa to floating-point
        double fmant = mant * pow (2.0, -39.0);

        // rotate exponent field right by 1 bit
        expo = (expo >> 1) | ((expo & 1) << 7);

        // sign extend exponent from 8 to 32 bits
        expo = ((expo ^ (1 << 7)) - (1 << 7));

        // compute scale factor from exponent field
        double scale = pow (2.0, expo);

        // scale mantissa, and apply sign bit for final result
        double num = fmant * scale;
        num = mant_sign ? -num : num;

        printf ("%012llx  --> % 20.11e\n", test_data[i], num);
    }
    return EXIT_SUCCESS;
}

The output of the above program should look as follows:

a7eb851eb90a  -->  -2.20200000000e+001
a870a3d70a0a  -->  -2.18900000000e+001
a8ae147ae20a  -->  -2.18300000000e+001
a8e147ae140a  -->  -2.17800000000e+001
a9666666670a  -->  -2.16500000000e+001
ac70a3d70a0a  -->  -2.08900000000e+001
acc28f5c290a  -->  -2.08100000000e+001
accccccccc0a  -->  -2.08000000000e+001
ae70a3d70b0a  -->  -2.03900000000e+001
aeb851eb850a  -->  -2.03200000000e+001
400000000002  -->   1.00000000000e+000
43851eb85204  -->   2.11000000000e+000
451eb851eb04  -->   2.16000000000e+000
4c7ae147ae04  -->   2.39000000000e+000
4ec4ec4ec5f3  -->   4.80769230769e-003
519999999a04  -->   2.55000000000e+000
5838b6be9bf3  -->   5.38461538456e-003
5b851eb85202  -->   1.43000000000e+000
5bd70a3d7108  -->   1.14800000000e+001
5c7ae147ae08  -->   1.15600000000e+001
5e51eb851e08  -->   1.17900000000e+001
5fd70a3d7108  -->   1.19800000000e+001
62e147ae1508  -->   1.23600000000e+001
64a3d70a3e08  -->   1.25800000000e+001
666666666702  -->   1.60000000000e+000
67ae147ae202  -->   1.62000000000e+000
6b204b9e54f3  -->   6.53846153847e-003
733333333302  -->   1.80000000000e+000
762762762af3  -->   7.21153846158e-003
794dfb4619f3  -->   7.40384615382e-003
7c74941627f3  -->   7.59615384651e-003
7e07e07e14f3  -->   7.69230769248e-003



回答2:


Implementation of njuffa approach in Delphi

type
  THexabyte = array[0..5] of Byte;

function ConvertHPToDouble(const Data: THexabyte): Double;
var
  iexp: Integer;
  pbi: PByteArray;
  i64: Int64;
begin
  iexp := Data[5] shr 1;  //unsigned shift
  if (Data[5] and 1) <> 0 then    //use exp sign
     iexp := - iexp;
  pbi := @i64;
  pbi[0] := 0;
  pbi[1] := 0;
  pbi[2] := 0;
  pbi[3] := Data[4];    //shuffle bytes into intel order
  pbi[4] := Data[3];
  pbi[5] := Data[2];
  pbi[6] := Data[1];
  pbi[7] := Data[0];
  i64 := i64 div (1 shl 23);  //arithmetic shift saves sign
  Result := i64 / (Int64(1) shl (40 - iexp));
end;


var
  Data: THexabyte;
  i: Integer;
  s: string;
begin
  s := 'A870A3D70A0A';
  for i := 0 to 5 do
    Data[i] := StrToInt('$' + Copy(s, i * 2 + 1, 2));
  Memo1.Lines.Add(Format('%14.7f', [ConvertHPToDouble(Data)]));
  // gives    -21.8900000



回答3:


Converting njuffa's code into Delphi:

  • The mantissa is left-shifted 16 bits to form a 64 bit signed integer.
  • The exponent is extracted and rotated right 1 bit to form a signed 8 bit integer.
  • The resulting double is scaled by multiplying the mantissa with IntPower(2,-63+Exponent)

program HP_Float_To_Double;    
{$APPTYPE CONSOLE}    
uses
  System.SysUtils,Math;    
var
  test_data : TArray<Int64> = [
      $A7EB851EB90A, $A870A3D70A0A, $A8AE147AE20A, $A8E147AE140A,
      $A9666666670A, $AC70A3D70A0A, $ACC28F5C290A, $ACCCCCCCCC0A,
      $AE70A3D70B0A, $AEB851EB850A, $400000000002, $43851EB85204,
      $451EB851EB04, $4C7AE147AE04, $4EC4EC4EC5F3, $519999999A04,
      $5838B6BE9BF3, $5B851EB85202, $5BD70A3D7108, $5C7AE147AE08,
      $5E51EB851E08, $5FD70A3D7108, $62E147AE1508, $64A3D70A3E08,
      $666666666702, $67AE147AE202, $6B204B9E54F3, $733333333302,
      $762762762AF3, $794DFB4619F3, $7C74941627F3, $7E07E07E14F3];

function Exponent( b: Byte): ShortInt;
begin
  Result := (b shr 1) or ((b and 1) shl 7);
end;

function HPFloatToDouble( HP: Int64): Double;
var
  Exp: ShortInt;
begin
  HP := HP shl 16; // Shift left 16 bits
  Exp := Exponent(PByte(@HP)[2]); // Rotate exponent right 1 position into signed 8 bit
  HP := (HP and $FFFFFFFFFF000000); // Clear exponent part from mantissa
  Result := HP*IntPower(2,-63+Exp); // Scale result
end;

var
  I64 : Int64;
begin
  for I64 in test_data do
    WriteLn(Format('%x -> %20.11e',[I64, HPFloatToDouble(I64)]));
  ReadLn;
end.

The output is following:

A7EB851EB90A ->   -2,2020000000E+001
A870A3D70A0A ->   -2,1890000000E+001
A8AE147AE20A ->   -2,1830000000E+001
A8E147AE140A ->   -2,1780000000E+001
A9666666670A ->   -2,1650000000E+001
AC70A3D70A0A ->   -2,0890000000E+001
ACC28F5C290A ->   -2,0810000000E+001
ACCCCCCCCC0A ->   -2,0800000000E+001
AE70A3D70B0A ->   -2,0390000000E+001
AEB851EB850A ->   -2,0320000000E+001
400000000002 ->    1,0000000000E+000
43851EB85204 ->    2,1100000000E+000
451EB851EB04 ->    2,1600000000E+000
4C7AE147AE04 ->    2,3900000000E+000
4EC4EC4EC5F3 ->    4,8076923077E-003
519999999A04 ->    2,5500000000E+000
5838B6BE9BF3 ->    5,3846153846E-003
5B851EB85202 ->    1,4300000000E+000
5BD70A3D7108 ->    1,1480000000E+001
5C7AE147AE08 ->    1,1560000000E+001
5E51EB851E08 ->    1,1790000000E+001
5FD70A3D7108 ->    1,1980000000E+001
62E147AE1508 ->    1,2360000000E+001
64A3D70A3E08 ->    1,2580000000E+001
666666666702 ->    1,6000000000E+000
67AE147AE202 ->    1,6200000000E+000
6B204B9E54F3 ->    6,5384615385E-003
733333333302 ->    1,8000000000E+000
762762762AF3 ->    7,2115384616E-003
794DFB4619F3 ->    7,4038461538E-003
7C74941627F3 ->    7,5961538465E-003
7E07E07E14F3 ->    7,6923076925E-003


来源:https://stackoverflow.com/questions/41174389/hp-2114-15-16-floating-point-conversion

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!