直接上程序,通过注释说明
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision # 数据库模块
import os
import time
torch.manual_seed(1) # 为pytorch中的随机操作设置一个随机种子,使得每次随机的结果都一样
# 一些超参数(全局参数)
EPOCH = 2 # 训练整批数据多少次, 为了节约时间, 我们只训练一次
BATCH_SIZE = 50 # 小批量梯度下降的梯度规格,每次拿一个batch的数据来训练,来优化一波参数
LR = 0.001 # 学习率
if os.path.exists('./mnist/'): # 如果已经存在(下载)了就不用下载了
DOWNLOAD_MNIST = False
else:
DOWNLOAD_MNIST = True
# Mnist 手写数字
train_data = torchvision.datasets.MNIST(
root='./mnist/', # 保存或者提取位置
train=True, # this is training data
transform=torchvision.transforms.ToTensor(), # 转换 PIL.Image or numpy.ndarray 成
# torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间
download=DOWNLOAD_MNIST, # 没下载就下载, 下载了就不用再下了
)
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
# 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)
train_loader = Data.DataLoader(
dataset=train_data,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=0
)
# 为了节约时间, 我们测试时只测试前2000个(unsqueeze增加维度)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000] / 255.
# shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( # input shape (1, 28, 28)
nn.Conv2d(
in_channels=1, # input height,厚度,黑白的,一层厚
out_channels=16, # 过滤器/卷积核的个数
kernel_size=5, # 过滤器/卷积核的规格、尺寸 5*5*channel
stride=1, # 步长
padding=2, # 如果想要 con2d 出来的图片长宽没有变化, padding=(kernel_size-1)/2 当 stride=1
), # output shape (16, 28, 28)
nn.ReLU(), # 激活函数
nn.MaxPool2d(kernel_size=2), # 在 2x2 空间里向下采样, output shape (16, 14, 14)
# nn.MaxPool2d()的stride默认值是kernel_size
)
self.conv2 = nn.Sequential( # input shape (16, 14, 14)
nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14)
nn.ReLU(), # activation
nn.MaxPool2d(2), # output shape (32, 7, 7)
)
# 输出层
self.out = nn.Sequential(
nn.Linear(32 * 7 * 7, 10), # fully connected layer, output 10 classes
nn.Softmax(dim=-1) # 分类中常用的激活函数,dim=-1,在行上进行softmax
)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # 把conv2的宽7*高7*厚32的数据拉成1维 (batch_size, 32 * 7 * 7)
output = self.out(x)
return output
cnn = CNN()
# print(cnn) # 网络结构
'''
CNN(
(conv1): Sequential(
(0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(conv2): Sequential(
(0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(out): Sequential(
(0): Linear(in_features=1568, out_features=10, bias=True)
(1): Softmax(dim=-1)
)
)
'''
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # 优化器,传入所有参数
loss_func = nn.CrossEntropyLoss() # 损失函数
if __name__ == '__main__':
# training and testing
for epoch in range(EPOCH):
ts = time.time()
for step, (b_x, b_y) in enumerate(train_loader): # 分配 batch data, normalize x when iterate train_loader
output = cnn(b_x) # 拿一个batch的数据跑一圈网络,得一个batch的预测值
loss = loss_func(output, b_y) # 计算损失
optimizer.zero_grad() # 清零梯度(上一茬的梯度还在)
loss.backward() # 误差反向传递
optimizer.step() # 梯度优化参数
# 拿测试数据测测准确度
if step % 100 == 0:
test_output = cnn(test_x)
pred_y = torch.max(test_output, 1)[1]
accurary = sum((test_y == pred_y).numpy()) / len(test_y)
print('Epoch: {} | step: {:0>4d} | train loss: {:.5f} | test accurary: {:.3f}'.format(epoch, step, loss, accurary))
'''
...
Epoch: 1 | step: 0800 | train loss: 1.46197 | test accurary: 0.974
Epoch: 1 | step: 0900 | train loss: 1.46265 | test accurary: 0.975
Epoch: 1 | step: 1000 | train loss: 1.46209 | test accurary: 0.973
Epoch: 1 | step: 1100 | train loss: 1.52070 | test accurary: 0.980
'''
# te = time.time() # 算一下处理这一batch的时间
# print('time cost:', te-ts)
# 可以不必有这保存提取的过程,只是为了全一下流程
# 训练结束后保存模型
torch.save(cnn, r'data/models/ministcnn.pkl')
# 提取模型测试模型
cnn2 = torch.load(r'data/models/ministcnn.pkl')
test_output = cnn2(test_x)
pred_y = torch.max(test_output, 1)[1] # 把数据条目中维度为1 的删除掉
print(pred_y, 'prediction number')
print(test_y, 'real number')
print('accuracy:', sum((test_y == pred_y).numpy()) / len(test_y))
'''
tensor([7, 2, 1, ..., 3, 9, 5]) prediction number
tensor([7, 2, 1, ..., 3, 9, 5]) real number
accuracy: 0.9805
'''
参考文献
程序主要出自 CNN 卷积神经网络,略有改动
来源:CSDN
作者:BBJG_001
链接:https://blog.csdn.net/BBJG_001/article/details/104423159