题目描述
给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入: word1 = “horse”, word2 = “ros”
输出: 3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例2:
输入: word1 = “intention”, word2 = “execution”
输出: 5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
动态规划
思路:
dp[i][j]表示word1的前i个字符到word2到前j个字符的编辑距离
- 若word1[I] == word2[j] 则dp[I][j] = dp[i-1][j-1]
- 若word1[I] != word2[j] 则dp[I][j] =1+ min( dp[i-1][j-1], dp[i-1][j], dp[i][j-1]), 其中dp[i-1][j-1]表示出现替换的情况,dp[i-1][j]表示出现删除的情况, dp[i][j-1]表示出现插入的情况
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
n = len(word1)
m = len(word2)
dp = [[0 for i in range(m+1)] for i in range(n+1)]
for i in range(1, m+1):
dp[0][i] = i
for i in range(1, n+1):
dp[i][0] = i
for i in range(1, n+1):
for j in range(1, m+1):
if word1[i-1] == word2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = 1+min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j])
return dp[-1][-1]
来源:CSDN
作者:蛋挞麦宁
链接:https://blog.csdn.net/m0_37763891/article/details/104413758