1、dataset的join连接,通过key进行关联,一般情况下的join都是inner join,类似sql里的inner join
key包括以下几种情况:
a key expression
a key-selector function
one or more field position keys (Tuple DataSet only).
Case Class Fields
2、inner join的几种情况
2.1 缺省的join,jion到一个Tuple2元组里
public static class User { public String name; public int zip; } public static class Store { public Manager mgr; public int zip; } DataSet<User> input1 = // [...] DataSet<Store> input2 = // [...] // result dataset is typed as Tuple2 DataSet<Tuple2<User, Store>> result = input1.join(input2) .where("zip") // key of the first input (users) .equalTo("zip"); // key of the second input (stores)
2.2 用户自定义JoinFuncation,使用with语句
// some POJO public class Rating { public String name; public String category; public int points; } // Join function that joins a custom POJO with a Tuple public class PointWeighter implements JoinFunction<Rating, Tuple2<String, Double>, Tuple2<String, Double>> { @Override public Tuple2<String, Double> join(Rating rating, Tuple2<String, Double> weight) { // multiply the points and rating and construct a new output tuple return new Tuple2<String, Double>(rating.name, rating.points * weight.f1); } } DataSet<Rating> ratings = // [...] DataSet<Tuple2<String, Double>> weights = // [...] DataSet<Tuple2<String, Double>> weightedRatings = ratings.join(weights) // key of the first input .where("category") // key of the second input .equalTo("f0") // applying the JoinFunction on joining pairs .with(new PointWeighter());
2.3 使用Flat-Join Function,这种JoinFuncation和FlatJoinFuncation与MapFuncation和FlatMapFuncation的关系类似
public class PointWeighter implements FlatJoinFunction<Rating, Tuple2<String, Double>, Tuple2<String, Double>> { @Override public void join(Rating rating, Tuple2<String, Double> weight, Collector<Tuple2<String, Double>> out) { if (weight.f1 > 0.1) { out.collect(new Tuple2<String, Double>(rating.name, rating.points * weight.f1)); } } } DataSet<Tuple2<String, Double>> weightedRatings = ratings.join(weights) // [...]
2.4 join的投影构造,生成自定义的结果集
DataSet<Tuple3<Integer, Byte, String>> input1 = // [...] DataSet<Tuple2<Integer, Double>> input2 = // [...] DataSet<Tuple4<Integer, String, Double, Byte>> result = input1.join(input2) // key definition on first DataSet using a field position key .where(0) // key definition of second DataSet using a field position key .equalTo(0) // select and reorder fields of matching tuples .projectFirst(0,2).projectSecond(1).projectFirst(1);
projectFirst(int...) and projectSecond(int...) 选择应组合成输出元组的第一个和第二个连接输入的字段。索引的顺序定义了输出元组中字段的顺序。 连接投影也适用于非元组数据集,在这种情况下,必须在不带参数的情况下调用projectFirst()或projectSecond(),以将连接元素添加到输出元组。
2.5 加入join数据集大小提示,这是为了优化join的效率,引导优化器选择正确的执行策略。
DataSet<Tuple2<Integer, String>> input1 = // [...] DataSet<Tuple2<Integer, String>> input2 = // [...] DataSet<Tuple2<Tuple2<Integer, String>, Tuple2<Integer, String>>> result1 = // hint that the second DataSet is very small input1.joinWithTiny(input2) .where(0) .equalTo(0); DataSet<Tuple2<Tuple2<Integer, String>, Tuple2<Integer, String>>> result2 = // hint that the second DataSet is very large input1.joinWithHuge(input2) .where(0) .equalTo(0);
2.6 join的算法提示,Flink运行时可以以各种方式执行连接。在不同情况下,每种可能的方式都优于其他方式。系统会尝试自动选择合理的方式,但允许您手动选择策略,以防您想要强制执行连接的特定方式。
DataSet<SomeType> input1 = // [...] DataSet<AnotherType> input2 = // [...] DataSet<Tuple2<SomeType, AnotherType> result = input1.join(input2, JoinHint.BROADCAST_HASH_FIRST) .where("id").equalTo("key");
OPTIMIZER_CHOOSES:相当于不提供任何提示,将选择留给系统。 BROADCAST_HASH_FIRST:广播第一个输入并从中构建哈希表,由第二个输入探测。如果第一个输入非常小,这是一个很好的策略。 BROADCAST_HASH_SECOND:广播第二个输入并从中构建一个哈希表,由第一个输入探测。如果第二个输入非常小,这是一个好策略。 REPARTITION_HASH_FIRST:系统对每个输入进行分区(shuffle)(除非输入已经分区)并从第一个输入构建哈希表。如果第一个输入小于第二个输入,则此策略很好,但两个输入仍然很大。 注意:如果不能进行大小估算,并且不能重新使用预先存在的分区和排序顺序,则这是系统使用的默认回退策略。 REPARTITION_HASH_SECOND:系统对每个输入进行分区(shuffle)(除非输入已经被分区)并从第二个输入构建哈希表。如果第二个输入小于第一个输入,则此策略很好,但两个输入仍然很大。 REPARTITION_SORT_MERGE:系统对每个输入进行分区(shuffle)(除非输入已经被分区)并对每个输入进行排序(除非它已经排序)。输入通过已排序输入的流合并来连接。如果已经对一个或两个输入进行了排序,则此策略很好。
3、FlatJoinFunction与FlatMapFunction的区别(JoinFuncation和MapFuncation的情况类似)
1、实际上两者可以干相同的事情 2、使用的区别是FlatJoinFunction有两个输入(就是join的两个数据集)一个输出, 而FlatMapFunction只有一个输入,但是这个输入参数里可以直接包括多个输入结构(即join的两个数据集都可以放入到一个输入参数里), 所以最终实现的结果实际是一致的。
3.1 FlatMapFunction应用join的例子
DataSet<Long> pagesInput = // [...] DataSet<Tuple2<Long, Long>> linksInput = // [...] DataSet<Tuple2<Long, Double>> pagesWithRanks = // [...] DataSet<Tuple2<Long, Long[]>> adjacencyListInput =// [...] IterativeDataSet<Tuple2<Long, Double>> iteration = // [...] DataSet<Tuple2<Long, Double>> newRanks = iteration.join(adjacencyListInput) .where(0).equalTo(0) .flatMap(new JoinVertexWithEdgesMatch()) //下面的不用关注 .groupBy(0) .aggregate(Aggregations.SUM, 1) .map(new Dampener(PageRank.DAMPENING_FACTOR, numPages));
public static final class JoinVertexWithEdgesMatch implements FlatMapFunction<Tuple2<Tuple2<Long, Double>, Tuple2<Long, Long[]>>, Tuple2<Long, Double>> { @Override public void flatMap(Tuple2<Tuple2<Long, Double>, Tuple2<Long, Long[]>> value, Collector<Tuple2<Long, Double>> out) { Long[] neighbors = value.f1.f1; double rank = value.f0.f1; double rankToDistribute = rank / ((double) neighbors.length); for (Long neighbor : neighbors) { out.collect(new Tuple2<Long, Double>(neighbor, rankToDistribute)); } } }
从上面的例子可以看到FlatMapFunction虽然只有一个输入,但是输入参数Tuple2里包含两个Tuple2,这被包含的两个Tuple2就是join的两个数据集。
3.2 FlatJoinFunction和JoinFuncation例子,它们使用with语句来实现
DataSet<Tuple2<Long, Long>> changes = iteration.getWorkset().join(edges) .where(0).equalTo(0) .with(new NeighborWithComponentIDJoin()) .groupBy(0).aggregate(Aggregations.MIN, 1) .join(iteration.getSolutionSet()).where(0).equalTo(0) .with(new ComponentIdFilter()); public static final class NeighborWithComponentIDJoin implements JoinFunction<Tuple2<Long, Long>, Tuple2<Long, Long>, Tuple2<Long, Long>> { @Override public Tuple2<Long, Long> join(Tuple2<Long, Long> vertexWithComponent, Tuple2<Long, Long> edge) { return new Tuple2<>(edge.f1, vertexWithComponent.f1); } } public static final class ComponentIdFilter implements FlatJoinFunction<Tuple2<Long, Long>, Tuple2<Long, Long>, Tuple2<Long, Long>> { @Override public void join(Tuple2<Long, Long> candidate, Tuple2<Long, Long> old, Collector<Tuple2<Long, Long>> out) { if (candidate.f1 < old.f1) { out.collect(candidate); } } }
从上述例子可以看到FlatJoinFunction或者JoinFunction是两个输入参数,也就是join的两个数据集
3.3 从源码上看,FlatJoinFunction与FlatMapFunction两者实际没太大区别
@Public @FunctionalInterface public interface FlatJoinFunction<IN1, IN2, OUT> extends Function, Serializable { /** * The join method, called once per joined pair of elements. * * @param first The element from first input. * @param second The element from second input. * @param out The collector used to return zero, one, or more elements. * * @throws Exception This method may throw exceptions. Throwing an exception will cause the operation * to fail and may trigger recovery. */ void join (IN1 first, IN2 second, Collector<OUT> out) throws Exception; }
@Public @FunctionalInterface public interface FlatMapFunction<T, O> extends Function, Serializable { /** * The core method of the FlatMapFunction. Takes an element from the input data set and transforms * it into zero, one, or more elements. * * @param value The input value. * @param out The collector for returning result values. * * @throws Exception This method may throw exceptions. Throwing an exception will cause the operation * to fail and may trigger recovery. */ void flatMap(T value, Collector<O> out) throws Exception; }
4、outer join,外连接,类似sql的left join,right join,full join的情况
OuterJoin在两个数据集上执行左,右或全外连接。外连接类似于常规的(inner join)连接,并创建在其键上相等的所有元素对。此外,如果在另一侧没有找到匹配的key,则保留“外部”侧(左侧,右侧或两者)的记录。匹配元素对(或一个元素和另一个输入的空值)被赋予JoinFunction以将元素对转换为单个元素,或者给予FlatJoinFunction以将元素对转换为任意多个(包括none)元素。
4.1 外连接OuterJoin
OuterJoin调用用户定义的连接函数来处理连接元组。连接函数接收第一个输入DataSet的一个元素和第二个输入DataSet的一个元素,并返回一个元素。根据外连接的类型(left,right,full),join函数的两个输入元素之一可以为null。 以下代码使用键选择器函数执行DataSet与自定义java对象和Tuple DataSet的左外连接,并显示如何使用用户定义的连接函数:
// some POJO public class Rating { public String name; public String category; public int points; } // Join function that joins a custom POJO with a Tuple public class PointAssigner implements JoinFunction<Tuple2<String, String>, Rating, Tuple2<String, Integer>> { @Override public Tuple2<String, Integer> join(Tuple2<String, String> movie, Rating rating) { // Assigns the rating points to the movie. // NOTE: rating might be null return new Tuple2<String, Double>(movie.f0, rating == null ? -1 : rating.points; } } DataSet<Tuple2<String, String>> movies = // [...] DataSet<Rating> ratings = // [...] DataSet<Tuple2<String, Integer>> moviesWithPoints = movies.leftOuterJoin(ratings) // key of the first input .where("f0") // key of the second input .equalTo("name") // applying the JoinFunction on joining pairs .with(new PointAssigner());
4.2 FlatJoinFuncation实现OuterJoin
public class PointAssigner implements FlatJoinFunction<Tuple2<String, String>, Rating, Tuple2<String, Integer>> { @Override public void join(Tuple2<String, String> movie, Rating rating Collector<Tuple2<String, Integer>> out) { if (rating == null ) { out.collect(new Tuple2<String, Integer>(movie.f0, -1)); } else if (rating.points < 10) { out.collect(new Tuple2<String, Integer>(movie.f0, rating.points)); } else { // do not emit } } DataSet<Tuple2<String, Integer>> moviesWithPoints = movies.leftOuterJoin(ratings) // [...]
来源:https://www.cnblogs.com/asker009/p/11074417.html