Datawhale 组队学习打卡营 任务13:卷积神经网络基础

落花浮王杯 提交于 2020-02-19 04:54:36

卷积神经网络基础

本章介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。

目录

  • 二维卷积层

    1. 二维互相关运算

    2. 二维卷积层

    3. 互相关运算和卷积运算

    4. 特征图和感受野

  • 填充和步幅

    1. 填充

    2. 步幅

  • 多输入通道和多输出通道

    1. 多输入通道

    2. 多输出通道

    3. 1*1卷积层

  • 卷积层和全连接层的对比

  • 卷积层的简洁实现

  • 池层

    1. 二维池化层

    2. 池化层的简洁实现

二维卷积层

最常见的二维卷积层,常用于处理图像数据。

二维互相关运算

二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。

在这里插入图片描述下面我们用corr2d函数实现二维互相关运算,它接受输入数组X与核数组K,并输出数组Y。

import torch 
import torch.nn as nn

def corr2d(X, K):
	# X,K 分别是输入数组和核数组
    H, W = X.shape
    # H, W 输入数组的长和宽
    h, w = K.shape
    # h, w 核数组的长和宽
    Y = torch.zeros(H - h + 1, W - w + 1)		# 输出数组计算公式
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
    return Y

构造上图中的输入数组X、核数组K来验证二维互相关运算的输出。

X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
K = torch.tensor([[0, 1], [2, 3]])
Y = corr2d(X, K)
print(Y)

output:
tensor([[19., 25.],
        [37., 43.]])

二维卷积层

二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super(Conv2D, self).__init__()
        self.weight = nn.Parameter(torch.randn(kernel_size))		# 权重
        self.bias = nn.Parameter(torch.randn(1))					# 偏置

    def forward(self, x):
        return corr2d(x, self.weight) + self.bias					# 经过卷积核处理的输出

下面我们看一个例子,我们构造一张6×8的图像,中间4列为黑(0),其余为白(1),希望检测到颜色边缘。我们的标签是一个6×7的二维数组,第2列是1(从1到0的边缘),第6列是-1(从0到1的边缘)。

X = torch.ones(6, 8)
Y = torch.zeros(6, 7)
X[:, 2: 6] = 0
Y[:, 1] = 1
Y[:, 5] = -1
print(X)
print(Y)

output:
tensor([[1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.]])
tensor([[ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.]])

我们希望学习一个1×2卷积层,通过卷积层来检测颜色边缘。

conv2d = Conv2D(kernel_size=(1, 2))
step = 30
lr = 0.01
for i in range(step):
    Y_hat = conv2d(X)
    # 均方误差损失函数
    l = ((Y_hat - Y) ** 2).sum()
    l.backward()
    # 梯度下降
    conv2d.weight.data -= lr * conv2d.weight.grad
    conv2d.bias.data -= lr * conv2d.bias.grad
    
    # 梯度清零
    conv2d.weight.grad.zero_()
    conv2d.bias.grad.zero_()
    if (i + 1) % 5 == 0:
        print('Step %d, loss %.3f' % (i + 1, l.item()))
        
print(conv2d.weight.data)
print(conv2d.bias.data)

output:
Step 5, loss 4.569
Step 10, loss 0.949
Step 15, loss 0.228
Step 20, loss 0.060
Step 25, loss 0.016
Step 30, loss 0.004
tensor([[ 1.0161, -1.0177]])
tensor([0.0009])

互相关运算和卷积运算

卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

特征图与感受野

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素x的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做x的感受野(receptive field)。

以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2×2的输出记为Y,将Y与另一个形状为2×2的核数组做互相关运算,输出单个元素z。那么,z在Y上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

填充和步幅

我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。

填充

填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。
在这里插入图片描述

步幅

在这里插入图片描述

多输入通道和多输出通道

之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么它可以表示为一个3×h×w的多维数组,我们将大小为3的这一维称为通(channel)维。

多输入通道

在这里插入图片描述

多输出通道

在这里插入图片描述

1*1卷积层

在这里插入图片描述

卷积层和全连接层的对比

在这里插入图片描述

卷积层的简洁实现

在这里插入图片描述

X = torch.rand(4, 2, 3, 5)
# (batch,channels,height,width)
print(X.shape)

conv2d = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=(3, 5), stride=1, padding=(1, 2))
# padding(上下填充,左右填充) 
Y = conv2d(X)
print('Y.shape: ', Y.shape)
print('weight.shape: ', conv2d.weight.shape)
print('bias.shape: ', conv2d.bias.shape)


output:
torch.Size([4, 2, 3, 5])
Y.shape:  torch.Size([4, 3, 3, 5])
weight.shape:  torch.Size([3, 2, 3, 5])
bias.shape:  torch.Size([3])

池化

二维池化层

在这里插入图片描述

池化层的简洁实现

在这里插入图片描述

X = torch.arange(32, dtype=torch.float32).view(1, 2, 4, 4)
pool2d = nn.MaxPool2d(kernel_size=3, padding=1, stride=(2, 1))
Y = pool2d(X)
print(X)
print(Y)

output:
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]],

         [[16., 17., 18., 19.],
          [20., 21., 22., 23.],
          [24., 25., 26., 27.],
          [28., 29., 30., 31.]]]])
tensor([[[[ 5.,  6.,  7.,  7.],
          [13., 14., 15., 15.]],

         [[21., 22., 23., 23.],
          [29., 30., 31., 31.]]]])

平均池化层使用的是nn.AvgPool2d,使用方法与nn.MaxPool2d相同。

错题:
假如你用全连接层处理一张256 \times 256256×256的彩色(RGB)图像,卷积核的高宽是3 \times 33×3,输出包含10个通道,在使用偏置的情况下,这个卷积层共有多少个参数:
(我的错误答案 :3310+ 10)
输入通道数是3,输出通道数是10,所以参数数量是10 * 3 * 3 * 3 + 10 = 280

关于池化层,以下哪种说法是错误的:A (我选了B)
A.池化层不参与反向传播
B.池化层没有模型参数
C.池化层通常会减小特征图的高和宽
D.池化层的输入和输出具有相同的通道数

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!