[机器学习]第二周记录

﹥>﹥吖頭↗ 提交于 2020-02-15 08:52:10

这篇记录的内容来自于Andrew Ng教授在coursera网站上的授课。 


 

1.多元线性回归(multivariate linear regression):

h函数:$h_{\theta}{(x)}=\theta_{0}+\sum_{i=1}^{n}{\theta_{i}x_{i}}$

为方便起见,每个样本的维度都设为n+1维,每一维都向后延一位,第一维是1。

则$$h_{\theta}{(x)}=\sum_{i=0}^{n}{\theta_{i}x_{i}}$$

$$h_{\theta}{(x)}={\theta}^{T}x$$

J函数为平方误差函数。

最小化$\frac{1}{2m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)}-y^{(i)})^2}$。

多元线性回归的梯度下降法:

$\theta_{i}:=\theta_{i}-\alpha\frac{1}{m}\sum_{j=1}^{m}{(h_{\theta}(x^{(j)}-y^{(j)})}x^{(j)}_{i}$

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!