https://github.com/zisianw/FaceBoxes.PyTorch/blob/master/models/faceboxes.py
开始的maxpooling不能去掉,去掉就变慢好几倍
inception和reitnaface很像
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=1e-5)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
class Inception(nn.Module):
def __init__(self):
super(Inception, self).__init__()
self.branch1x1 = BasicConv2d(128, 32, kernel_size=1, padding=0)
self.branch1x1_2 = BasicConv2d(128, 32, kernel_size=1, padding=0)
self.branch3x3_reduce = BasicConv2d(128, 24, kernel_size=1, padding=0)
self.branch3x3 = BasicConv2d(24, 32, kernel_size=3, padding=1)
self.branch3x3_reduce_2 = BasicConv2d(128, 24, kernel_size=1, padding=0)
self.branch3x3_2 = BasicConv2d(24, 32, kernel_size=3, padding=1)
self.branch3x3_3 = BasicConv2d(32, 32, kernel_size=3, padding=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch1x1_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch1x1_2 = self.branch1x1_2(branch1x1_pool)
branch3x3_reduce = self.branch3x3_reduce(x)
branch3x3 = self.branch3x3(branch3x3_reduce)
branch3x3_reduce_2 = self.branch3x3_reduce_2(x)
branch3x3_2 = self.branch3x3_2(branch3x3_reduce_2)
branch3x3_3 = self.branch3x3_3(branch3x3_2)
outputs = [branch1x1, branch1x1_2, branch3x3, branch3x3_3]
return torch.cat(outputs, 1)
class CRelu(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(CRelu, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=1e-5)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = torch.cat([x, -x], 1)
x = F.relu(x, inplace=True)
return x
class FaceBoxes(nn.Module):
def __init__(self, phase, size, num_classes):
super(FaceBoxes, self).__init__()
self.phase = phase
self.num_classes = num_classes
self.size = size
self.conv1 = CRelu(3, 24, kernel_size=7, stride=4, padding=3)
self.conv2 = CRelu(48, 64, kernel_size=5, stride=2, padding=2)
self.inception1 = Inception()
self.inception2 = Inception()
self.inception3 = Inception()
self.conv3_1 = BasicConv2d(128, 128, kernel_size=1, stride=1, padding=0)
self.conv3_2 = BasicConv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv4_1 = BasicConv2d(256, 128, kernel_size=1, stride=1, padding=0)
self.conv4_2 = BasicConv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.loc, self.conf = self.multibox(self.num_classes)
if self.phase == 'test':
self.softmax = nn.Softmax(dim=-1)
if self.phase == 'train':
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m.bias is not None:
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.02)
else:
m.weight.data.normal_(0, 0.01)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def multibox(self, num_classes):
loc_layers = []
conf_layers = []
loc_layers += [nn.Conv2d(128, 21 * 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(128, 21 * num_classes, kernel_size=3, padding=1)]
loc_layers += [nn.Conv2d(256, 1 * 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(256, 1 * num_classes, kernel_size=3, padding=1)]
loc_layers += [nn.Conv2d(256, 1 * 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(256, 1 * num_classes, kernel_size=3, padding=1)]
return nn.Sequential(*loc_layers), nn.Sequential(*conf_layers)
def forward(self, x):
detection_sources = list()
loc = list()
conf = list()
x = self.conv1(x)
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
x = self.conv2(x)
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
x = self.inception1(x)
x = self.inception2(x)
x = self.inception3(x)
detection_sources.append(x)
x = self.conv3_1(x)
x = self.conv3_2(x)
detection_sources.append(x)
x = self.conv4_1(x)
x = self.conv4_2(x)
detection_sources.append(x)
for (x, l, c) in zip(detection_sources, self.loc, self.conf):
loc.append(l(x).permute(0, 2, 3, 1).contiguous())
conf.append(c(x).permute(0, 2, 3, 1).contiguous())
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
if self.phase == "test":
output = (loc.view(loc.size(0), -1, 4),
self.softmax(conf.view(conf.size(0), -1, self.num_classes)))
else:
output = (loc.view(loc.size(0), -1, 4),
conf.view(conf.size(0), -1, self.num_classes))
return output
来源:CSDN
作者:ShellCollector
链接:https://blog.csdn.net/jacke121/article/details/104301869