My main goal is to show that the convolution theorem works (just a reminder: the convolution theorem means that idft(dft(im) .* dft(mask)) = conv(im, mask)
). I'm trying to program that.
Here is my code:
function displayTransform( im )
% This routine displays the Fourier spectrum of an image.
%
% Input: im - a grayscale image (values in [0,255])
%
% Method: Computes the Fourier transform of im and displays its spectrum,
% (if F(u,v) = a+ib, displays sqrt(a^2+b^2)).
% Uses display techniques for visualization: log, and stretch values to full range,
% cyclic shift DC to center (use fftshift).
% Use showImage to display and fft2 to apply transform.
%displays the image in grayscale in the Frequency domain
imfft = fft2(im);
imagesc(log(abs(fftshift(imfft))+1)), colormap(gray);
% building mask and padding it with Zeros in order to create same size mask
b = 1/16*[1 1 1 1;1 1 1 1; 1 1 1 1; 1 1 1 1];
paddedB = padarray(b, [floor(size(im,1)/2)-2 floor(size(im,2)/2)-2]);
paddedB = fft2(paddedB);
C = imfft.*paddedB;
resIFFT = ifft2(C);
%reguler convolution
resConv = conv2(im,b);
showImage(resConv);
end
I want to compare resIFFT
and resConv
. I think I'm missing some casting because I am getting numbers in the matrix closer one to another if I'm using casting to double.
Maybe I have some mistake in the place of the casting or the padding?
In order to compute the linear convolution using DFT, you need to post-pad both signals with zeros, otherwise the result would be the circular convolution. You don't have to manually pad a signal though,
fft2
can do it for you if you add additional parameters to the function call, like so:fft2(X, M, N)
This pads (or truncates) signal
X
to create an M-by-N signal before doing the transform.
Pad each signal in each dimension to a length that equals the sum of the lengths of both signals, that is:M = size(im, 1) + size(mask, 1); N = size(im, 2) + size(mask, 2);
Just for good practice, instead of:
b = 1 / 16 * [1 1 1 1; 1 1 1 1; 1 1 1 1; 1 1 1 1];
you can write:
b = ones(4) / 16;
Anyway, here's the fixed code (I've generated a random image just for the sake of the example):
im = fix(255 * rand(500)); % # Generate a random image
mask = ones(4) / 16; % # Mask
% # Circular convolution
resConv = conv2(im, mask);
% # Discrete Fourier transform
M = size(im, 1) + size(mask, 1);
N = size(im, 2) + size(mask, 2);
resIFFT = ifft2(fft2(im, M, N) .* fft2(mask, M, N));
resIFFT = resIFFT(1:end-1, 1:end-1); % # Adjust dimensions
% # Check the difference
max(abs(resConv(:) - resIFFT(:)))
The result you should get is supposed to be zero:
ans =
8.5265e-014
Close enough.
来源:https://stackoverflow.com/questions/14025967/verify-the-convolution-theorem