笔试算法题(40):后缀数组 & 后缀树(Suffix Array & Suffix Tree)

冷暖自知 提交于 2020-02-03 00:14:37

议题:后缀数组(Suffix Array)

分析:

  • 后缀树和后缀数组都是处理字符串的有效工具,前者较为常见,但后者更容易编程实现,空间耗用更少;后缀数组可用于解决最长公共子串问题,多模式匹配问题,最长回文串问题,全文搜索等问题;

    后缀数组的基本元素:

  • 给定一个string,其长度为L,后缀指的是从string的某一个位置i(0<=i<L)开始到串末尾(string[L-1])的一个子串,表示为suffix(i);

  • L个suffix(i)按照字典顺序排列并顺序存储在一个数组SA[L]中,则SA[L]称为后缀数组,其元素值存储的是suffix(i)的起始字符在string中的位置;

  • 每一个suffix[i]对应在SA[k]数组中的一个位置,将这个对应的位置存储为Rank[i],时间复杂度为O(N);对于任意两个 suffix[i]和suffix[j],由于知晓其在Rank[L]中的前后位置,所以在O(1)的时间内就可以得出他们的字典序大小关系;

  • 构建SA[i]数组中相邻元素的最长公共前缀(LCP,Longest Common Prefix),Height[i]表示SA[i]和SA[i-1]的LCP(i, j);H[i]=Height[Rank[i]表示Suffix[i]和字典排序在它前一名的后缀子串的LCP大小;

    对于正整数i和j而言,最长公共前缀的定义如下:

                     LCP(i, j) =lcp(Suffix(SA[i]), Suffix(SA[j]))  = min(Height[k]|i+1<=k<=j);

    也就是计算LCP(i, j)等同于查找Height数组中下表在i+1到j之间的元素最小值

    下述例子中如果LCP(0, 3),则最小值为2,则"aadab"和"aabaaaab"的LCP为2

     

     

  后缀数组的构建:

  • 为了方便比较,创建后缀数组前都会在string的末尾添加一个$字符表示字符串的结束,并且在字典序中最小;

  • 使用常见的排序算法结合strcmp函数构建后缀数组,但strcmp为线性时间复杂度,所以不能体现后缀数组的时间优势;1989,Udi Manber & Gene Myers使用倍增算法(Doubling Algorithm)快速构造后缀数组,其利用了后缀子串之间的联系可将时间复杂度降至O(MlogN),M为模式串的长度,N为目标串的长度;另外基数 排序算法的时间复杂度为O(N);Difference Cover mod 3(DC3)算法(Linear Work Suffix Array Construction)可在O(3N)时间内构建后缀数组;Ukkonen算法(On-line Construction of Suffix-Trees)可在O(N)的时间内构建一棵后缀树,然后再O(N)的时间内将后缀树转换为后缀数组,理论上最快的后缀数组构造法;

  • 结论1:如果Aj =h Ak并且Aj+h <=h Ak+h,则Aj <=2*h Ak (其中j+h<n, k+h<n,=h表示字符串Aj的前h个字符与Ak的前h个字符字典序相等,并且=可以替换成<,<=, =, >, >=)

     

  • 倍增算法中:输入为string的所有suffix[i];按照<=h进行遍历排序,并且h的值在遍历时取"1,2,4,8,……2^n",每次遍 历保证后缀子串<=h有序;首先对h进行排序;当扩展到<=2h有序的时候,由于2h的前面h个字符已经比较过,所以只需要比较后面的h个字 符,而后面的这h个字符恰好在前一次<=h有序的时候作为其他后缀的前h个字符已经比较过,所以一次遍历中字符串的比较开销为O(N);长度为N的 字符串需要进行logN次遍历(h的值为2^N),直到Rank[i]数组中没有相等的字符串;所以倍增算法的时间复杂度为O(NlogN);其实基数排 序可以有更好的时间复杂度O(N);

    给定string:abba,则可以得到suffix[4]的数组:A0=abba, A1=bba, A2=ba, A3=a

    当h=1时,按照<=h排序:A0 =h A3 <h A2 =h A1

    当 2h=2时,按照<=2h排序:对于A0和A3而言,A3的后半段结束字符$,则直接判定A3较小;A3与A2之间的小于关系不变;对于A1和A2 而言,因为A2 =h A1,所以只要比较a和ba的<=h的比较结果,其就是A3跟A2的<=h的比较结果;

  • 利用倍增算法得到suffix[i]的有序数组Rank[i]之后,就可以分别在O(N)的时间复杂度内得到SA[i]数组和H[i]数组;

  后缀数组的应用:

  • 最长公共前缀(LCP,Longest Common Prefix)的后缀数组解法:构建SA[i]数组中相邻元素的最长公共前缀(LCP,Longest Common Prefix),Height[i]表示SA[i]和SA[i-1]的LCP;如果需要求解string中的后缀子串suffix[i]和 suffix[j]的LCP,则通过Rank数组取得两个后缀的排名m和n(m<n),则Height数组在m+1和n之间的最小值就是目标的 LCP;

  • 最长回文子串(LPS,Longest Palindrome Substring)的后缀数组解法:如求字符串abcddcef的LPS,则将原字符串翻转并在前面加上$字符,最后连接到源字符串末尾变成 abcddcef$fecddcba,所以LPS转换为求新字符串某两个suffix子串的最长公共前缀;

  • 最长公共子串(LCS,Longest Common Substring)的后缀数组解法:最长公共子串指的是字符必须靠在一起的子串,不同于最长公共子序列;一种解法是动态规划(Dynamic Programming),时间复杂度为O(N^2);一种解法是KMP算法,时间复杂度为O(N^2);一种解法是后缀数组解法,时间复杂度为 O(NlogN);如求字符串S1:abcdefg和字符串S2:kgdefac的LCS,将S2前面加上$字符并连接到S1末尾变成 abcdefg$kgdefac,则LCS也转换为求新字符串中某两个suffic子串的最长公共前缀,但是这两个子串的起始位置必须在$前后;

样例:

 1 const int MAXL = 10011, MAXN = 6;
 2 struct SuffixArray {
 3         struct RadixElement {
 4                 int id, k[2];
 5         } RE[MAXL], RT[MAXL];
 6         
 7         int N, A[MAXL], SA[MAXL], Rank[MAXL], Height[MAXL], C[MAXL];
 8         
 9         void RadixSort() {
10                 int i, y;
11                 for (y = 1; y >= 0; y--) {
12                         memset(C, 0, sizeof(C));
13                         for (i = 1; i <= N; i++)
14                                 C[RE[i].k[y]++;
15                         for (i = 1; i < MAXL; i++)
16                                 C[i] += C[i - 1];
17                         for (i = N; i >= 1; i--)
18                                 RT[C[RE[i].k[y]--] = RE[i];
19                         for (i = 1; i <= N; i++)
20                                 RE[i] = RT[i];
21                 }
22                 for (i = 1; i <= N; i++) {
23                         Rank[RE[i].id] = Rank[RE[i - 1].id];
24                         if (RE[i].k[0] != RE[i - 1].k[0] || RE[i].k[1] != RE[i - 1].k[1])
25                                 Rank[RE[i].id]++;
26                 }
27         }
28         
29         void CalcSA() {
30                 int i, k;
31                 RE[0].k[0] = -1;
32                 for (i = 1; i <= N; i++)
33                         RE[i].id = i, RE[i].k[0] = A[i], RE[i].k[1] = 0;
34                 RadixSort();
35                 for (k = 1; k + 1 <= N; k *= 2) {
36                         for (i = 1; i <= N; i++)
37                                 RE[i].id = i, RE[i].k[0] = Rank[i], RE[i].k[1] =
38                                                 i + k <= N ? Rank[i + k] : 0;
39                         RadixSort();
40                 }
41                 for (i = 1; i <= N; i++)
42                         SA[Rank[i] = i;
43         }
44         
45         void CalcHeight() {
46                 int i, k, h = 0;
47                 for (i = 1; i <= N; i++) {
48                         if (Rank[i] == 1)
49                                 h = 0;
50                         else {
51                                 k = SA[Rank[i] - 1];
52                                 if (--h < 0)
53                                         h = 0;
54                                 for (; A[i + h] == A[k + h]; h++)
55                                         ;
56                         }
57                         Height[Rank[i] = h;
58                 }
59         }
60 } SA;

参考链接:
http://www.byvoid.com/blog/lcs-suffix-array/
http://dongxicheng.org/structure/suffix-array/
http://wenku.baidu.com/view/3338866b561252d380eb6ed7.html

 

补充:后缀树(Suffix Tree)

  • 同后缀数组一样,后缀树是解决字符串处理的高效工具;后缀树基于Trie树的基本树形结构:

  • 首先按照后缀的定义生成一个string的所有后缀子串suffix[i],然后构建Trie树,由于在Trie树中一个substring不能是另一个 substring的前缀,所以需要在原始string的末尾加上一个$字符;而后缀树就是包含string所有后缀子串的压缩Trie树 (Compressed Trie Tree);

  • 然后对Trie树进行压缩,原始定义的Trie树中,一条边仅代表一个字符,而对于没有分支的路径则可以将路径上的节点压缩成为一个节点,使得一条边代表多个字符;

  • 接着针对具体问题构建广义后缀树(Generalized Suffix Tree):由于构建后缀树的时候会在string末尾添加结束字符,则如果在不同的string添加不同的结束字符($或者#),则可以在同一棵后缀树中包含多个字符串;

  • 最后寻找最低公共祖先(Lowest Common Ancestor):在后缀树中的LCA对应string中最长公共前缀(Longest Common Prefix),这一操作可以在O(1)完成;

  后缀树的应用:

  • 从目标串T中判断是否包含模式串P(时间复杂度接近KMP算法);
  • 从目标串T中查找最长的重复子串;
  • 从目标串T1和T2中查找最长公共子串;
  • Ziv-Lampel无损压缩算法;
  • 从目标串T中查找最长的回文子串;

参考连接:
http://blog.csdn.net/TsengYuen/article/details/4815921
http://www.allisons.org/ll/AlgDS/Tree/Suffix/

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!