目录
一、时间序列是什么
时间序列在多个时间点观察或测量到的任何事物,很多都是固定频率出现 的,比如每15秒、每5分钟、每月。
padnas提供了一组标准的时间序列处理工具和数据算法,基本的时间序列类型是以时间戳为索引的Series。
当创建一个带有DatetimeIndex的Series时,pandas就会知道对象是一个时间序列,用Numpy的datetime64数据以纳秒形式存储时间。
dates=[
datetime(2020,1,2),datetime(2020,1,5),datetime(2020,1,7),
datetime(2020,1,8),datetime(2020,1,10),datetime(2020,1,12)
]
ts=pd.Series(np.random.randn(6),index=dates)
ts
2020-01-02 -0.140776
2020-01-05 0.185088
2020-01-07 0.555777
2020-01-08 0.693348
2020-01-10 -0.213715
2020-01-12 -0.259721
dtype: float64
ts.index
DatetimeIndex(['2020-01-02', '2020-01-05', '2020-01-07', '2020-01-08',
'2020-01-10', '2020-01-12'],
dtype='datetime64[ns]', freq=None)
ts.index.dtype
dtype('<M8[ns]')
二、时间序列的选取-时间字符串/at_time/between_time/asof
1.传入一个可以被解释为日期的字符串
ts['1/10/2020']
-0.3216128833894315
ts['2020-01-02']
0.47508960825683716
#也可以只传入年或月
longer_ts['2021']
2021-01-01 1.596179
2021-01-02 -0.458160
2021-01-03 1.380482
...
2021-12-29 0.343524
2021-12-30 0.040584
2021-12-31 -1.616620
Freq: D, Length: 365, dtype: float64
#通过日期进行切片
ts[datetime(2020,1,7):]
2020-01-07 0.555777
2020-01-08 0.693348
2020-01-10 -0.213715
2020-01-12 -0.259721
dtype: float64
ts['1/6/2020':'1/11/2020']
2020-01-07 0.555777
2020-01-08 0.693348
2020-01-10 -0.213715
dtype: float64
2.通过at_time获取指定时间点
# 生成一个交易日内的日期范围和时间序列,以分为纬度
rng=pd.date_range('2020-06-01 09:30','2020-06-01 15:59',freq='T')
#生成5天的时间点
rng=rng.append([rng+pd.offsets.BDay(i) for i in range(1,4)])
ts=pd.Series(np.arange(len(rng),dtype=float),index=rng)
#抽取指定时间点:10点0分的数据
ts.at_time(time(10,0))
3.通过between_time获取两个时间点之间的数据
ts.between_time(time(10,0),time(10,1))
4.通过asof获取最接近当前时间的数据
asof解释:最后一行不是NaN值的值。通俗的说:假如我有一组数据,某个点的时候这个值是NaN,那就求这个值之前最近一个不是NaN的值是多少
selection=pd.date_range('2020-06-01 10:00',periods=4,freq='B')
ts.asof(selection)
三、时间序列的生成-datetime/date_range(start,end,perios,freq)
1.直接使用date_time生成
dates=[
datetime(2020,1,2),datetime(2020,1,5),datetime(2020,1,7),
datetime(2020,1,8),datetime(2020,1,10),datetime(2020,1,12)
]
ts=pd.Series(np.random.randn(6),index=dates)
date_range可以生成指定长度的DatetimeIndex
- 指定开始和结束
pd.date_range('4/1/2020','6/1/2020')
DatetimeIndex(['2020-04-01', '2020-04-02', '2020-04-03', '2020-04-04',
'2020-04-05', '2020-04-06', '2020-04-07', '2020-04-08',
'2020-04-09', '2020-04-10', '2020-04-11', '2020-04-12',
'2020-04-13', '2020-04-14', '2020-04-15', '2020-04-16',
'2020-04-17', '2020-04-18', '2020-04-19', '2020-04-20',
'2020-04-21', '2020-04-22', '2020-04-23', '2020-04-24',
'2020-04-25', '2020-04-26', '2020-04-27', '2020-04-28',
'2020-04-29', '2020-04-30', '2020-05-01', '2020-05-02',
'2020-05-03', '2020-05-04', '2020-05-05', '2020-05-06',
'2020-05-07', '2020-05-08', '2020-05-09', '2020-05-10',
'2020-05-11', '2020-05-12', '2020-05-13', '2020-05-14',
'2020-05-15', '2020-05-16', '2020-05-17', '2020-05-18',
'2020-05-19', '2020-05-20', '2020-05-21', '2020-05-22',
'2020-05-23', '2020-05-24', '2020-05-25', '2020-05-26',
'2020-05-27', '2020-05-28', '2020-05-29', '2020-05-30',
'2020-05-31', '2020-06-01'],
dtype='datetime64[ns]', freq='D')
- 指定步长
pd.date_range(start='4/1/2020',periods=20)
DatetimeIndex(['2020-04-01', '2020-04-02', '2020-04-03', '2020-04-04',
'2020-04-05', '2020-04-06', '2020-04-07', '2020-04-08',
'2020-04-09', '2020-04-10', '2020-04-11', '2020-04-12',
'2020-04-13', '2020-04-14', '2020-04-15', '2020-04-16',
'2020-04-17', '2020-04-18', '2020-04-19', '2020-04-20'],
dtype='datetime64[ns]', freq='D')
- 指定偏移量
M:日历月末最后一天
pd.date_range('1/1/2020','12/1/2020',freq='M')
DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30',
'2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31',
'2020-09-30', '2020-10-31', '2020-11-30'],
dtype='datetime64[ns]', freq='M')
BM:每月的最后个工作日,business end of month
pd.date_range('1/1/2020','12/1/2020',freq='BM')
DatetimeIndex(['2020-01-31', '2020-02-28', '2020-03-31', '2020-04-30',
'2020-05-29', '2020-06-30', '2020-07-31', '2020-08-31',
'2020-09-30', '2020-10-30', '2020-11-30'],
dtype='datetime64[ns]', freq='BM')
自定义时间偏移,如h、4h、1h30min
pd.date_range('1/1/2020',periods=10,freq='1h30min')
DatetimeIndex(['2020-01-01 00:00:00', '2020-01-01 01:30:00',
'2020-01-01 03:00:00', '2020-01-01 04:30:00',
'2020-01-01 06:00:00', '2020-01-01 07:30:00',
'2020-01-01 09:00:00', '2020-01-01 10:30:00',
'2020-01-01 12:00:00', '2020-01-01 13:30:00'],
dtype='datetime64[ns]', freq='90T')
四、时间序列的偏移量对照表-freq
名称 | 偏移量类型 | 说明 |
---|---|---|
D | Day | 每日 |
B | BusinessDay | 每工作日 |
H | Hour | 每小时 |
T或min | Minute | 每分 |
S | Second | 每秒 |
L或ms | Milli | 每毫秒 |
U | Micro | 每微秒 |
M | MounthEnd | 每月最后一个日历日 |
BM | BusinessMonthEnd | 每月最后一个工作日 |
MS | MonthBegin | 每月每一个工作日 |
BMS | BusinessMonthBegin | 每月第一个工作日 |
W-MON、W-TUE... | Week | 指定星期几(MON、TUE、WED、THU、FRI、SAT、SUM) |
WOM-1MON、WMON-2MON | WeekOfMonth | 产生每月第一、第二、第三或第四周的星期几 |
Q-JAN、Q-FEB... | QuaterEnd | 对于以指定月份(JAN、FEB、MAR、APR、MAY、JUN、JUL、AUG、SEP、OCT、NOV、DEC)结束的年度,每季度最后一月的最后一个日历日 |
BQ-JAN、BQ-FEB... | BusinessQuaterEnd | 对于以指定月份结束的年度,每季度最后一月的最后一个工作日 |
QS-JAN、QS-FEB... | QuaterBegin | 对于以指定月份结束的年度,每季度最后一月的第一个日历日 |
QS-JAN、QS-FEB... | BusinessQuaterBegin | 对于指定月份结束的年度,每季度最后一月的第一个工作日 |
A-JAN、A-FEB... | YearEnd | 每年指定月份的最后一个日历日 |
BA-JAN、BA-FEB | BusinessYearEnd | 每年指定月份的最后一个日历日 |
AS-JAN、AS-FEB | YearBegin | 每年指定月份的第一个日历日 |
BAS-JAN、BAS-FEB | BusinessYearBegin | 每年指定月份的第一个工作日 |
例如,每月第3个星期五
pd.date_range('1/1/2020','9/1/2020',freq='WOM-3FRI')
DatetimeIndex(['2020-01-17', '2020-02-21', '2020-03-20', '2020-04-17',
'2020-05-15', '2020-06-19', '2020-07-17', '2020-08-21'],
dtype='datetime64[ns]', freq='WOM-3FRI')
五、时间序列的前移或后移-shift/通过Day或MonthEnd
shift方法用于执行单纯的前移或后移操作
ts=pd.Series(np.random.randn(4),
index=pd.date_range('1/1/2020',periods=4,freq='M'))
ts
2020-01-31 0.185458
2020-02-29 0.549704
2020-03-31 0.146584
2020-04-30 0.983613
Freq: M, dtype: float64
向后移动一个月
ts.shift(1,freq='M')
2020-02-29 0.185458
2020-03-31 0.549704
2020-04-30 0.146584
2020-05-31 0.983613
Freq: M, dtype: float64
向前移动3天
ts.shift(-3,freq='D')
2020-01-28 0.185458
2020-02-26 0.549704
2020-03-28 0.146584
2020-04-27 0.983613
dtype: float64
通过Day或MonthEnd移动
from pandas.tseries.offsets import Day,MonthEnd
now=datetime(2020,1,27)
now+3*Day()
Timestamp('2020-01-30 00:00:00')
now+MonthEnd()
Timestamp('2020-01-31 00:00:00')
五、时区处理-tz/tz_convert
python的时区信息来自第三方库pytz,pandas包装了pytz的功能
查看所有时区
pytz.common_timezones
转换时区- tz_convert
rng=pd.date_range('3/9/2020 9:30',periods=6,freq='D',tz='UTC')
ts=pd.Series(np.random.randn(len(rng)),index=rng)
ts
2020-03-09 09:30:00+00:00 -1.779006
2020-03-10 09:30:00+00:00 -0.293860
2020-03-11 09:30:00+00:00 -0.174114
2020-03-12 09:30:00+00:00 0.749316
2020-03-13 09:30:00+00:00 0.342134
2020-03-14 09:30:00+00:00 1.101283
Freq: D, dtype: float64
ts.tz_convert('Asia/Shanghai')
2020-03-09 17:30:00+08:00 -1.779006
2020-03-10 17:30:00+08:00 -0.293860
2020-03-11 17:30:00+08:00 -0.174114
2020-03-12 17:30:00+08:00 0.749316
2020-03-13 17:30:00+08:00 0.342134
2020-03-14 17:30:00+08:00 1.101283
Freq: D, dtype: float64
六、时期及算术运算-period
时期(period)表示的是时间区间,比如数日、数月、数季、数年等
下面这个Period对象表示从2020年1月1日到2020年12月31日之间的整段时间
p=pd.Period(2020,freq='A-DEC')
p
Period('2020', 'A-DEC')
创建规则的时期范围
#季度为Q生成13个时间
pd.period_range("2019-01", periods=13, freq="Q")
#Q代表季度为频率,默认的后缀为DEC代表一年以第1个月为结束【最后一个月为1月份】
pd.period_range("2019-01", periods=13, freq="Q-JAN")
# 以季度Q【年为频率】生成13个时间
pd.period_range("2019-01", periods=13, freq="Y")
#以季度Q【2个月为频率】生成13个时间
pd.period_range("2019-01", periods=13, freq="2m")
PeriodIndex类保存了一组Period,可以在pandas数据结构中用作轴索引
rng=pd.period_range('1/1/2020','6/30/2020',freq='M')
rng
PeriodIndex(['2020-01', '2020-02', '2020-03', '2020-04', '2020-05', '2020-06'], dtype='period[M]', freq='M')
pd.Series(np.random.randn(6),rng)
2020-01 -1.050150
2020-02 -0.828435
2020-03 1.648335
2020-04 1.476485
2020-05 0.779732
2020-06 -1.394688
Freq: M, dtype: float64
使用字符串创建PeriodIndex
Q代表季度为频率,默认的后缀为DEC代表一年以第12个月为结束
pd.PeriodIndex(['2020Q3','2020Q2','2020Q1'],freq='Q-DEC')
Period和PeriodIndex互转-asfreq
p=pd.Period('2020',freq='A-DEC')
p.asfreq('M',how='start')
Period('2020-01', 'M')
p=pd.Period('2020-08',freq='M')
p.asfreq('A-JUN')
Period('2021', 'A-JUN')
to_period可以将datetime转period
rng=pd.date_range('1/1/2020',periods=6,freq='D')
ts=pd.Series(np.random.randn(6),index=rng)
ts
2020-01-01 -1.536552
2020-01-02 -0.550879
2020-01-03 0.601546
2020-01-04 -0.103521
2020-01-05 0.445024
2020-01-06 1.127598
Freq: D, dtype: float64
ts.to_period('M')
2020-01 -1.536552
2020-01 -0.550879
2020-01 0.601546
2020-01 -0.103521
2020-01 0.445024
2020-01 1.127598
Freq: M, dtype: float64
to_timespame可以将Period转换为时间戳
ts.to_period('M').to_timestamp()
七、频率转换-resample
重采样(resampling)指将时间序列从一个频率转换到另一个频率的处理过程
pandas对象都带有一个resample方法,是各种频率转换的函数
降采样率
#查看100天的采样
rng=pd.date_range('1/1/2020',periods=100,freq='D')
ts=pd.Series(np.random.randn(len(rng)),index=rng)
# 转为一月的
ts.resample('M').mean()
2020-01-31 -0.049213
2020-02-29 -0.155195
2020-03-31 -0.000091
2020-04-30 -0.023561
Freq: M, dtype: float64
分钟的采样转为5分钟的
rng=pd.date_range('1/1/2020',periods=12,freq='T')
ts=pd.Series(np.random.randn(len(rng)),index=rng)
ts.resample('5min').sum()
2020-01-01 00:00:00 1.376219
2020-01-01 00:05:00 0.883248
2020-01-01 00:10:00 -0.939534
Freq: 5T, dtype: float64
通过groupby进行采样,传入一个能够访问时间序列的索引上字段的函数
rng=pd.date_range('1/1/2020',periods=100,freq='D')
ts=pd.Series(np.random.randn(len(rng)),index=rng)
ts.groupby(lambda x:x.month).mean()
2020-01-31 0.182420
2020-02-29 0.200134
2020-03-31 -0.108818
2020-04-30 -0.187426
Freq: M, dtype: float64
升采样率
示例: 周数据转为日
# 周数据
frame=pd.DataFrame(
np.random.randn(2,4),
index=pd.date_range('1/1/2020',periods=2,freq='W-WED'),
columns=['Colorado','Texa','New York','Ohio']
)
# #转为日
frame.resample('D').asfreq()
#用前面的值填充
frame.resample('D').ffill()
#用后面的值填充
frame.resample('D').bfill()
来源:CSDN
作者:雨落无影
链接:https://blog.csdn.net/songfei_dream/article/details/104107884