问题
I have some 2D-arrays filled with 0
and 1
:
import numpy as np
a = np.random.randint(2, size=(20, 20))
b = np.random.randint(2, size=(20, 20))
c = np.random.randint(2, size=(20, 20))
d = np.random.randint(2, size=(20, 20))
and I want to count the consecutive occurrence of the ones with periodic boundaries. That means (in 1D for clearness):
[1 1 0 0 1 1 0 1 1 1]
should give me 5
(last three elements + first two).
The 2D-arrays should be compared/counted in the third (second if you start with 0) axis, like first stacking the arrays in axis=2
and then applying the same algorithm like for 1D. But I am not sure if this is the most simple way.
回答1:
Here's one way for ndarrays a
of 2D
and higher dim arrays, meant for performance efficiency -
def count_periodic_boundary(a):
a = a.reshape(-1,a.shape[-1])
m = a==1
c0 = np.flip(m,axis=-1).argmin(axis=-1)+m.argmin(axis=-1)
z = np.zeros(a.shape[:-1]+(1,),dtype=bool)
p = np.hstack((z,m,z))
c = (p[:,:-1]<p[:,1:]).sum(1)
s = np.r_[0,c[:-1].cumsum()]
l = np.diff(np.flatnonzero(np.diff(p.ravel())))[::2]
d = np.maximum(c0,np.maximum.reduceat(l,s))
return np.where(m.all(-1),a.shape[-1],d)
Sample runs -
In [75]: np.random.seed(0)
...: a = np.random.randint(2, size=(5, 20))
In [76]: a
Out[76]:
array([[0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1],
[0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0],
[0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1],
[1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0],
[0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0]])
In [77]: count_periodic_boundary(a)
Out[77]: array([7, 4, 5, 2, 6])
In [72]: np.random.seed(0)
...: a = np.random.randint(2, size=(2, 5, 20))
In [73]: a
Out[73]:
array([[[0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1],
[0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0],
[0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1],
[1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0],
[0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0]],
[[1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1],
[0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0],
[1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0]]])
In [74]: count_periodic_boundary(a)
Out[74]: array([7, 4, 5, 2, 6, 2, 5, 4, 2, 1])
回答2:
You can use groupby
from itertools
:
from itertools import groupby
a = [1, 1, 0, 0, 1, 1, 0, 1, 1, 1]
def get_longest_seq(a):
if all(a):
return len(a)
a_lens = [len(list(it)) for k, it in groupby(a) if k != 0]
if a[0] == 1 and a[-1] == 1:
m = max(max(a_lens), a_lens[0] + a_lens[-1])
else:
m = max(a_lens)
return m
print(get_longest_seq(a))
回答3:
Here is a two-liner, admittedly containing one rather long line:
*m,n = a.shape
return np.minimum(n,(np.arange(1,2*n+1)-np.maximum.accumulate(np.where(a[...,None,:],0,np.arange(1,2*n+1).reshape(2,n)).reshape(*m,2*n),-1)).max(-1))
How it works:
Let's first ignore the wrap around and consider a simple example: a = [1 0 0 1 1 0 1 1 1 0] We want to transform this into b = [1 0 0 1 2 0 1 2 3 0], so we can simply take the maximum. One way of generating b is taking the arange r = [1 2 3 4 5 6 7 8 9 10] and subtracting aux = [0 2 3 3 3 6 6 6 6 10]. aux we create by multiplying r with (1-a) yielding [0 2 3 0 0 6 0 0 0 10] and taking the cumulative maximum.
To deal with the wrap around we simply put two copies of a next to each other and then use the above.
Here is the code again broken down into smaller bits and commented:
*m,n = a.shape
# r has length 2*n because of how we deal with the wrap around
r = np.arange(1,2*n+1)
# create r x (1-a) using essentially np.where(a,0,r)
# it's a bit more involved because we are cloning a in the same step
# a will be doubled along a new axis we insert before the last one
# this will happen by means of broadcasting against r which we distribute
# over two rows along the new axis
# in the very end we merge the new and the last axis
r1_a = np.where(a[...,None,:],0,r.reshape(2,n)).reshape(*m,2*n)
# take cumulative max
aux = np.maximum.accumulate(r1_a,-1)
# finally, take the row wise maximum and deal with all-one rows
return np.minimum(n,(r-aux).max(-1))
来源:https://stackoverflow.com/questions/59053331/consecutive-values-in-array-with-periodic-boundaries-in-python