Consecutive values in array with periodic boundaries in Python

谁说我不能喝 提交于 2020-01-25 08:04:18

问题


I have some 2D-arrays filled with 0 and 1:

import numpy as np

a = np.random.randint(2, size=(20, 20))
b = np.random.randint(2, size=(20, 20))
c = np.random.randint(2, size=(20, 20))
d = np.random.randint(2, size=(20, 20)) 

and I want to count the consecutive occurrence of the ones with periodic boundaries. That means (in 1D for clearness):

[1 1 0 0 1 1 0 1 1 1]

should give me 5(last three elements + first two).
The 2D-arrays should be compared/counted in the third (second if you start with 0) axis, like first stacking the arrays in axis=2 and then applying the same algorithm like for 1D. But I am not sure if this is the most simple way.


回答1:


Here's one way for ndarrays a of 2D and higher dim arrays, meant for performance efficiency -

def count_periodic_boundary(a):
    a = a.reshape(-1,a.shape[-1])
    m = a==1    
    c0 = np.flip(m,axis=-1).argmin(axis=-1)+m.argmin(axis=-1)
    z = np.zeros(a.shape[:-1]+(1,),dtype=bool)
    p = np.hstack((z,m,z))
    c = (p[:,:-1]<p[:,1:]).sum(1)
    s = np.r_[0,c[:-1].cumsum()]
    l = np.diff(np.flatnonzero(np.diff(p.ravel())))[::2]
    d = np.maximum(c0,np.maximum.reduceat(l,s))    
    return np.where(m.all(-1),a.shape[-1],d)

Sample runs -

In [75]: np.random.seed(0)
    ...: a = np.random.randint(2, size=(5, 20))

In [76]: a
Out[76]: 
array([[0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1],
       [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0],
       [0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1],
       [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0],
       [0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0]])

In [77]: count_periodic_boundary(a)
Out[77]: array([7, 4, 5, 2, 6])


In [72]: np.random.seed(0)
    ...: a = np.random.randint(2, size=(2, 5, 20))

In [73]: a
Out[73]: 
array([[[0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1],
        [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0],
        [0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1],
        [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0],
        [0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0]],

       [[1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0],
        [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0],
        [1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1],
        [0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0],
        [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0]]])

In [74]: count_periodic_boundary(a)
Out[74]: array([7, 4, 5, 2, 6, 2, 5, 4, 2, 1])



回答2:


You can use groupby from itertools:

from itertools import groupby

a = [1, 1, 0, 0, 1, 1, 0, 1, 1, 1]

def get_longest_seq(a):
    if all(a):
        return len(a)

    a_lens = [len(list(it)) for k, it in groupby(a) if k != 0]

    if a[0] == 1 and a[-1] == 1:
        m = max(max(a_lens), a_lens[0] + a_lens[-1])
    else:
        m = max(a_lens)
    return m

print(get_longest_seq(a))



回答3:


Here is a two-liner, admittedly containing one rather long line:

*m,n = a.shape
return np.minimum(n,(np.arange(1,2*n+1)-np.maximum.accumulate(np.where(a[...,None,:],0,np.arange(1,2*n+1).reshape(2,n)).reshape(*m,2*n),-1)).max(-1))

How it works:

Let's first ignore the wrap around and consider a simple example: a = [1 0 0 1 1 0 1 1 1 0] We want to transform this into b = [1 0 0 1 2 0 1 2 3 0], so we can simply take the maximum. One way of generating b is taking the arange r = [1 2 3 4 5 6 7 8 9 10] and subtracting aux = [0 2 3 3 3 6 6 6 6 10]. aux we create by multiplying r with (1-a) yielding [0 2 3 0 0 6 0 0 0 10] and taking the cumulative maximum.

To deal with the wrap around we simply put two copies of a next to each other and then use the above.

Here is the code again broken down into smaller bits and commented:

*m,n = a.shape
# r has length 2*n because of how we deal with the wrap around
r = np.arange(1,2*n+1)
# create r x (1-a) using essentially np.where(a,0,r)
# it's a bit more involved because we are cloning a in the same step
# a will be doubled along a new axis we insert before the last one
# this will happen by means of broadcasting against r which we distribute
# over two rows along the new axis
# in the very end we merge the new and the last axis
r1_a = np.where(a[...,None,:],0,r.reshape(2,n)).reshape(*m,2*n)
# take cumulative max
aux = np.maximum.accumulate(r1_a,-1)
# finally, take the row wise maximum and deal with all-one rows
return np.minimum(n,(r-aux).max(-1))


来源:https://stackoverflow.com/questions/59053331/consecutive-values-in-array-with-periodic-boundaries-in-python

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!