问题
I have a df like this,
df,
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
df_mask = pd.DataFrame({'AAA' : [True] * 4, 'BBB' : [False] * 4,'CCC' : [True,False] * 2})
and df.where(df_mask)
is
AAA BBB CCC
0 4 NaN 100.0
1 5 NaN NaN
2 6 NaN -30.0
3 7 NaN NaN
I am trying to extract the non null values like this.
I tried,
df[df.where(df_mask).notnull()].to_dict()
but it gives all the values
My expected output is,
{'AAA': {0: 4, 1: 5, 2: 6, 3: 7},
'CCC': {0: 100.0, 2: -30.0}}
回答1:
Let's use agg
here:
v = df.where(df_mask).agg(lambda x: x.dropna().to_dict())
On older versions, apply
does the same thing (albeit a bit slower).
v = df.where(df_mask).apply(lambda x: x.dropna().to_dict())
And now, filter out rows with empty dictionaries for the final step:
res = v[v.str.len() > 0].to_dict()
print(res)
{'AAA': {0: 4.0, 1: 5.0, 2: 6.0, 3: 7.0}, 'CCC': {0: 100.0, 2: -30.0}}
Another apply-free option is a dict-comprehension:
v = df.where(df_mask)
res = {k : v[k].dropna().to_dict() for k in df}
print(res)
{'AAA': {0: 4, 1: 5, 2: 6, 3: 7}, 'BBB': {}, 'CCC': {0: 100.0, 2: -30.0}}
Note that this (slightly) simpler solution retains keys with empty values.
回答2:
You can iterate df
's columns and apply dropna
Series
wise
{col: df[col].dropna().values for col in df}
Which yields
{'AAA': array([4, 5, 6, 7]),
'BBB': array([], dtype=float64),
'CCC': array([ 100., -30.])}
You can filter out empty arrays such as 'BBB'
with
{key: val for key, val in ddict.items() if val}
来源:https://stackoverflow.com/questions/50903622/how-to-extract-non-na-values-in-a-list-or-dict-from-a-pandas-dataframe