问题
I have a pandas dataframe who just has numeric columns, and I am trying to create a separate histogram for all the features
ind group people value value_50
1 1 5 100 1
1 2 2 90 1
2 1 10 80 1
2 2 20 40 0
3 1 7 10 0
3 2 23 30 0
but in my real life data there are 50+ columns, how can I create a separate plot for all of them
I have tried
df.plot.hist( subplots = True, grid = True)
It gave me an overlapping unclear plot.
how can I arrange them using pandas subplots = True. Below example can help me to get graphs in (2,2) grid for four columns. But its a long method for all 50 columns
fig, [(ax1,ax2),(ax3,ax4)] = plt.subplots(2,2, figsize = (20,10))
回答1:
Pandas subplots=True
will arange the axes in a single column.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame(np.random.rand(7,20))
df.plot(subplots=True)
plt.tight_layout()
plt.show()
Here, tight_layout
isn't applied, because the figure is too small to arange the axes nicely. One can use a bigger figure (figsize=(...)
) though.
In order to have the axes on a grid, one can use the layout
parameter, e.g.
df.plot(subplots=True, layout=(4,5))
The same can be achieved if creating the axes via plt.subplots()
fig, axes = plt.subplots(nrows=4, ncols=5)
df.plot(subplots=True, ax=axes)
回答2:
If you want to plot them separately (which is why I ended up here), you can use
for i in df.columns:
plt.figure()
plt.hist(df[i])
来源:https://stackoverflow.com/questions/55567706/plot-all-pandas-dataframe-columns-separately