在编写多线程的时候,有一种情况是十分常见的。那就是,有些公共数据修改的机会比较少。相比较改写,它们读的机会反而高的多。通常而言,在读的过程中,往往伴随着查找的操作,中间耗时很长。给这种代码段加锁,会极大地降低我们程序的效率。那么有没有一种方法,可以专门处理这种多读少写的情况呢?
有,那就是读写锁。
(1)首先,我们定义一下基本的数据结构。
typedef struct _RWLock
{
int count;
int state;
HANDLE hRead;
HANDLE hWrite;
}RWLock;
同时,为了判断当前的锁是处于读状态,还是写状态,我们要定义一个枚举量,
typedef enum
{
STATE_EMPTY = 0,
STATE_READ,
STATE_WRITE
};
(2)初始化数据结构
RWLock* create_read_write_lock(HANDLE hRead, HANDLE hWrite)
{
RWLock* pRwLock = NULL;
assert(NULL != hRead && NULL != hWrite);
pRwLock = (RWLock*)malloc(sizeof(RWLock));
pRwLock->hRead = hRead;
pRwLock->hWrite = hWrite;
pRwLock->count = 0;
pRwLock->state = STATE_EMPTY;
return pRwLock;
}
(3)获取读锁
void read_lock(RWLock* pRwLock)
{
assert(NULL != pRwLock);
WaitForSingleObject(pRwLock->hRead, INFINITE);
pRwLock->counnt ++;
if(1 == pRwLock->count){
WaitForSingleObject(pRwLock->hWrite, INFINITE);
pRwLock->state = STATE_READ;
}
ReleaseMutex(pRwLock->hRead);
}
(4)获取写锁
void write_lock(RWLock* pRwLock)
{
assert(NULL != pRwLock);
WaitForSingleObject(pRwLock->hWrite, INFINITE);
pRwLock->state = STATE_WRITE;
}
(5)释放读写锁
void read_write_unlock(RWLock* pRwLock)
{
assert(NULL != pRwLock);
if(STATE_READ == pRwLock->state){
WaitForSingleObject(pRwLock->hRead, INFINITE);
pRwLock->count --;
if(0 == pRwLock->count){
pRwLock->state = STATE_EMPTY;
ReleaseMutex(pRwLock->hWrite);
}
ReleaseMutex(pRwLock->hRead);
}else{
pRwLock->state = STATE_EMPTY;
ReleaseMutex(pRwLock->hWrite);
}
return;
}
文章总结:
(1)读写锁的优势只有在多读少写、代码段运行时间长这两个条件下才会效率达到最大化;
(2)任何公共数据的修改都必须在锁里面完成;
(3)读写锁有自己的应用场所,选择合适的应用环境十分重要;
(4)编写读写锁很容易出错,朋友们应该多加练习;
(5)读锁和写锁一定要分开使用,否则达不到效果。
来源:CSDN
作者:cwl_java
链接:https://blog.csdn.net/weixin_42528266/article/details/103913191