一、高精度(大整数)加法
#include<bits/stdc++.h>
using namespace std;
struct bign{
int d[1000];
int len;
bign()
{
memset(d,0,sizeof(d));
len=0;
}
};
bign change(char str[])
{
bign a;
a.len=strlen(str);
for(int i=0;i<a.len;i++)
{
a.d[i]=str[a.len-i-1]-'0';//让整数顺位存储低位在低,高位在高。
}
return a;
}
bign add(bign a,bign b)
{
bign c;
int carry=0;//进位
for(int i=0;i<a.len||i<b.len;i++)
{
int temp=a.d[i]+b.d[i]+carry;//每一位相加加上相应的进位
c.d[c.len++]=temp%10;//temp个位为该位
carry=temp/10;//temp十位为进位
}
if(carry!=0)
{
c.d[c.len++]=carry;//最后一位相加产生了进位
}
return c;
}
void print(bign a)
{
for(int i=a.len-1;i>=0;i--)//高位在高位所以要倒着输出 比如123,现在高位1在数组最后一位
{
printf("%d",a.d[i]);
}
}
int main(){
char str1[1001],str2[1001];
while(~scanf("%s%s",str1,str2))
{
bign a=change(str1);
bign b=change(str2);
print(add(a,b));
}
return 0;
}
二、高精度(大整数)减法
#include<bits/stdc++.h>
using namespace std;
struct bign{
int d[1000];
int len;
bign()
{
memset(d,0,sizeof(d));
len=0;
}
};
bign change(char str[])
{
bign a;
a.len=strlen(str);
for(int i=0;i<a.len;i++)
{
a.d[i]=str[a.len-i-1]-'0';//让整数顺位存储低位在低,高位在高。
}
return a;
}
bign sub(bign a,bign b)
{
bign c;
for(int i=0;i<a.len||i<b.len;i++)
{
if(a.d[i]<b.d[i])//如果不够减
{
a.d[i+1]--;//高位借位
a.d[i]+=10;//当前位加10
}
c.d[c.len++]=a.d[i]-b.d[i];//减法结果为当前位结果
}
while(c.len-1>=1&&c.d[c.len-1]==0)
{
c.len--;//去除高位的0,同时至少保留一位最低位
}
return c;
}
void print(bign a)
{
for(int i=a.len-1;i>=0;i--)//高位在高位所以要倒着输出 比如123,现在高位1在数组最后一位
{
printf("%d",a.d[i]);
}
}
int Compare(bign a,bign b)
{
if(a.len>b.len)return 1;
else if(a.len<b.len)return -1;
else
{
for(int i=a.len-1;i>=0;i--)//从高位往低位比较
{
if(a.d[i]>b.d[i])return 1;
else if(a.d[i]<b.d[i])
return -1;
}
return 0;
}
}
int main(){
char str1[1001],str2[1001];
while(~scanf("%s%s",str1,str2))
{
bign a=change(str1);
bign b=change(str2);
if(Compare(a,b)==-1)
{
bign temp=a;
a=b;
b=temp;
printf("-");
}
print(sub(a,b));
}
return 0;
}
三、高精度(大整数)乘法
#include<bits/stdc++.h>
using namespace std;
struct bign{
int d[1000];
int len;
bign()
{
memset(d,0,sizeof(d));
len=0;
}
};
bign change(char str[])
{
bign a;
a.len=strlen(str);
for(int i=0;i<a.len;i++)
{
a.d[i]=str[a.len-i-1]-'0';//让整数顺位存储低位在低,高位在高。
}
return a;
}
bign multi(bign a,int b)
{
bign c;
int carry=0;
for(int i=0;i<a.len;i++)
{
int temp = a.d[i]*b+carry;
c.d[c.len++] = temp % 10;
carry = temp / 10;
}
while(carry!=0)
{
c.d[c.len++]=carry%10;
carry/=10;
}
return c;
}
void print(bign a)
{
for(int i=a.len-1;i>=0;i--)//高位在高位所以要倒着输出 比如123,现在高位1在数组最后一位
{
printf("%d",a.d[i]);
}
}
int main(){
char str1[1001];
int b;
while(~scanf("%s%d",str1,&b))//若a,b存在负数,需先记录下负号,带入绝对值运算
{
bign a=change(str1);
print(multi(a,b));
}
return 0;
}
三、高精度(大整数)除法
#include<bits/stdc++.h>
using namespace std;
struct bign{
int d[1000];
int len;
bign()
{
memset(d,0,sizeof(d));
len=0;
}
};
bign change(char str[])
{
bign a;
a.len=strlen(str);
for(int i=0;i<a.len;i++)
{
a.d[i]=str[a.len-i-1]-'0';//让整数顺位存储低位在低,高位在高。
}
return a;
}
bign divide(bign a,int b,int &r)
{
bign c;
c.len=a.len;//被除数的每一位和商的每一位都是一一对应的。如1234/7=0176
for(int i=a.len-1;i>=0;i--)
{
r=r*10+a.d[i];//当前位和上一位遗留余数组合
if(r<b)c.d[i]=0;//不够除该位为0
else
{
c.d[i]=r/b;
r=r%b;//获得新的余数
}
}
while(c.len-1>=1&&c.d[c.len-1]==0)
{
c.len--;//去除高位的0,同时至少保留一位最低位
}
return c;
}
void print(bign a)
{
for(int i=a.len-1;i>=0;i--)//高位在高位所以要倒着输出 比如123,现在高位1在数组最后一位
{
printf("%d",a.d[i]);
}
}
int main(){
char str1[1001];
int b;
int r=0;//r代表余数
while(~scanf("%s%d",str1,&b))//若a,b存在负数,需先记录下负号,带入绝对值运算
{
bign a=change(str1);
print(divide(a,b,r));
printf("\n%d",r);
}
return 0;
}
一、PAT题目
1017 A除以B (20分)
本题要求计算 A/B,其中 A 是不超过 1000 位的正整数,B 是 1 位正整数。你需要输出商数 Q 和余数 R,使得 A=B×Q+R 成立。
输入格式:
输入在一行中依次给出 A 和 B,中间以 1 空格分隔。
输出格式:
在一行中依次输出 Q 和 R,中间以 1 空格分隔。
输入样例:
123456789050987654321 7
输出样例:
17636684150141093474 3
#include<bits/stdc++.h>
using namespace std;
struct bign{
int d[1000];
int len;
};
bign change(char str[])
{
bign a;
a.len=strlen(str);
for(int i=0;i<a.len;i++)
{
a.d[i]=str[a.len-i-1]-'0';//让整数顺位存储低位在低,高位在高。
}
return a;
}
bign divide(bign a,int b,int &r)
{
bign c;
c.len=a.len;//被除数的每一位和商的每一位都是一一对应的。如1234/7=0176
for(int i=a.len-1;i>=0;i--)
{
r=r*10+a.d[i];//当前位和上一位遗留余数组合
if(r<b)c.d[i]=0;//不够除该位为0
else
{
c.d[i]=r/b;
r=r%b;//获得新的余数
}
}
while(c.len-1>=1&&c.d[c.len-1]==0)
{
c.len--;//去除高位的0,同时至少保留一位最低位
}
return c;
}
void print(bign a)
{
for(int i=a.len-1;i>=0;i--)//高位在高位所以要倒着输出 比如123,现在高位1在数组最后一位
{
printf("%d",a.d[i]);
}
}
int main(){
char str1[1001];
int b;
int r=0;//r代表余数
while(~scanf("%s%d",str1,&b))//若a,b存在负数,需先记录下负号,带入绝对值运算
{
bign a=change(str1);
print(divide(a,b,r));
printf(" %d\n",r);
}
return 0;
}
二、Codeup
问题 A: a+b
时间限制: 1 Sec 内存限制: 32 MB
提交: 899 解决: 352
[提交][状态][讨论版][命题人:外部导入]
题目描述
实现一个加法器,使其能够输出a+b的值。
输入
输入包括两个数a和b,其中a和b的位数不超过1000位。
输出
可能有多组测试数据,对于每组数据,
输出a+b的值。
样例输入
6 8
2000000000 30000000000000000000
样例输出
14
30000000002000000000
#include<bits/stdc++.h>
using namespace std;
struct bign{
int d[1001];
int len;
bign()
{
memset(d,0,sizeof(d));
len=0;
}
};
bign change(char str[])
{
bign a;
a.len=strlen(str);
for(int i=0;i<a.len;i++)
{
a.d[i]=str[a.len-i-1]-'0';
}
return a;
}
bign add(bign a,bign b)
{
bign c;
int carry=0;
for(int i=0;i<a.len||i<b.len;i++)
{
int temp=a.d[i]+b.d[i]+carry;
c.d[c.len++]=temp%10;
carry=temp/10;
}
if(carry!=0)
{
c.d[c.len++]=carry;
}
return c;
}
void print(bign a)
{
for(int i=a.len-1;i>=0;i--)
{
printf("%d",a.d[i]);
}
printf("\n");
}
int main(){
char str1[1001],str2[1001];
while(~scanf("%s%s",str1,str2))
{
bign a=change(str1);
bign b=change(str2);
print(add(a,b));
}
return 0;
}
来源:CSDN
作者:m0_37973043
链接:https://blog.csdn.net/m0_37973043/article/details/104042772