概述
ReentrantReadWriteLock维护了一对相关的锁,它们分别是共享readLock和独占writeLock。关于共享读锁和排他写锁的概念其实很好理解。所谓共享读锁就是一个线程读的时候,其它线程也可以来读(共享),但是不能来写。排他写锁是指一个线程在写的时候,其它线程不能来写或读(排他)。除了这个特点之外,ReentrantReadWriteLock还有一个特点就是可重入的。它和ReentrantLock一样都是支持Condition的。而且ReentrantReadWerite还支持锁降级,即允许将写锁降级为读锁。
简单使用
最最基础的用法如下:
ReentrantReadWriteLock lock=new ReentrantReadWriteLock(); public void read(){ lock.readLock().lock(); //需要加读锁的操作 lock.readLock().unlock(); } public void write(){ lock.writeLock().lock(); //需要加写锁的操作 lock.writeLock().unlock(); }
ReentrantReadWriteLock无非就是这几种情况,读读共享,写写互斥,读写互斥,写读互斥。
下面我们就以这个最基础的用法,来分析一下其内部的原理
源码分析
继承体系
共享读锁的实现原理分析
lock方法
- 首先进入调用具体的实现
public void lock() { sync.acquireShared(1); }
- 然后调用了这个方法
public final void acquireShared(int arg) { if (tryAcquireShared(arg) < 0) doAcquireShared(arg); }
其中int tryAcquireShared(int unused)
的具体实现如下:
protected final int tryAcquireShared(int unused) { /* * Walkthrough: * 1. If write lock held by another thread, fail. * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. */ Thread current = Thread.currentThread(); int c = getState(); //持有写锁的线程可以获取读锁,如果获取锁的线程不是当前线程,则返回-1 if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; int r = sharedCount(c);//获取共享读锁的数量 if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) { if (r == 0) { //如果首次获取锁,则初始化firstReader和firstReaderHoldCount firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { //如果当前线程是首次获取读锁的线程 firstReaderHoldCount++; } else { //更新HoldCounter HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } return fullTryAcquireShared(current); }
整个函数的工作流程如下:
- 如果写锁已经被持有了,但是持有写锁的不是当前写出,那么就直接返回-1(体现写锁的排他性).
- 如果在尝试获取锁是不需要阻塞等待(由锁的公平性决定),并且读锁的共享计数小于最大值,那么就直接通过CAS更新读锁数量,获取读锁。
- 如果第二步执行失败了,那么就会调用
fullTryAcquireShared(current)
fullTryAcquireShared(current)
的具体实现如下:
final int fullTryAcquireShared(Thread current) { /* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */ HoldCounter rh = null; for (;;) { //自旋 int c = getState(); if (exclusiveCount(c) != 0) { //写锁已经被持有了 if (getExclusiveOwnerThread() != current) //持有写锁的不是单线程 return -1; //其它线程持有读锁后,就不能在获取写锁了 // else we hold the exclusive lock; blocking here // would cause deadlock. } else if (readerShouldBlock()) {//由公平性决定需要阻塞 // Make sure we're not acquiring read lock reentrantly if (firstReader == current) { // assert firstReaderHoldCount > 0; } else { //更新锁计数(可重入的体现) if (rh == null) { rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) { rh = readHolds.get(); if (rh.count == 0) //如果当前线程的持有读锁数为0,那么就没必要使用计数器,直接移除 readHolds.remove(); } } if (rh.count == 0) return -1; } } if (sharedCount(c) == MAX_COUNT) //如果读锁的数量超过最大值了 throw new Error("Maximum lock count exceeded"); if (compareAndSetState(c, c + SHARED_UNIT)) { //CAS更新读锁数量 if (sharedCount(c) == 0) { //首次获取读锁 firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { //当前线程是首次获取读锁的线程,直接更新持有数 firstReaderHoldCount++; } else { //当前线程是后来共享读锁的线程 if (rh == null) rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get();//更新为当前线程的计数器 else if (rh.count == 0) readHolds.set(rh); rh.count++; cachedHoldCounter = rh; // cache for release } return 1; } } }
可以看出其实int fullTryAcquireShared(Thread current)
也每什么特别,它的代码和int tryAcquireShared(int unused)
差不多。只不过是增加了自旋重试,和“持有读锁数的延迟读取”
- 我们回到
void acquireShared(int arg)
方法,如果tryAcquireShared(arg)
获取读锁失败后,它调用的doAcquireShared(arg)
又做了什么呢?
它的具体实现如下:
private void doAcquireShared(int arg) { final Node node = addWaiter(Node.SHARED); //添加一个共享模式的Node到等待队列尾部 boolean failed = true; try { boolean interrupted = false; //获取前驱节点 for (;;) { final Node p = node.predecessor(); if (p == head) { //如果前驱节点,尝试获取资源 int r = tryAcquireShared(arg); if (r >= 0) { //获取成功,更新等待队列,并唤醒下一个等待的节点 setHeadAndPropagate(node, r); p.next = null; // help GC if (interrupted) selfInterrupt(); failed = false; return; } } if (shouldParkAfterFailedAcquire(p, node) && //检查获取失败后是否可以阻塞 parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
其实整个获取共享读锁的源码看下来,我们可以发现,AQS框架下,获取锁一般的流程就是首先尝试去直接获取,如果获取不到了,那么尝试自旋获取,如果还是获取不到,那么就去等待队列排队,排队的时候,如果发现自己是第二个那么就再次尝试获取锁,如果还是没获取到,那么就老老实实的在等待队列中park阻塞等待了。
我们通过源码,也可发现AQS框架下的锁,其实如果线程之间对锁的争用很低的时候,大多数时候直接就能拿到锁,几乎不需要排队,阻塞之类的,性能非常之高。
unlock方法
- 第一步还是调用具体的实现
public void unlock() { sync.releaseShared(1); }
- 具体的实现如下
public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { doReleaseShared(); return true; } return false; }
- 首先来看
tryReleaseShared(arg)
protected final boolean tryReleaseShared(int unused) { Thread current = Thread.currentThread(); if (firstReader == current) { //如过当前线程是第一获取到读锁的线程 // assert firstReaderHoldCount > 0; //直接更新线程持有数 if (firstReaderHoldCount == 1) firstReader = null; else firstReaderHoldCount--; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); //获取当前线程的计数器 int count = rh.count; if (count <= 1) { readHolds.remove(); if (count <= 0) throw unmatchedUnlockException(); } --rh.count; } for (;;) { //自旋 int c = getState(); int nextc = c - SHARED_UNIT; if (compareAndSetState(c, nextc)) //更新state // Releasing the read lock has no effect on readers, // but it may allow waiting writers to proceed if // both read and write locks are now free. return nextc == 0; } }
我们从tryReleaseShared(arg)
的实现中可以看出,它的主要是去更新锁计数器和state。如果state为0的话,就返回true,否则就返回false。
- 我们回过头看,如果
tryReleaseShared(arg)
返回true,即锁释放后state为0了,那么它会执行doReleaseShared();
方法,它的具体实现如下:
private void doReleaseShared() { /* * Ensure that a release propagates, even if there are other * in-progress acquires/releases. This proceeds in the usual * way of trying to unparkSuccessor of head if it needs * signal. But if it does not, status is set to PROPAGATE to * ensure that upon release, propagation continues. * Additionally, we must loop in case a new node is added * while we are doing this. Also, unlike other uses of * unparkSuccessor, we need to know if CAS to reset status * fails, if so rechecking. */ for (;;) { Node h = head; if (h != null && h != tail) { int ws = h.waitStatus; if (ws == Node.SIGNAL) { if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases unparkSuccessor(h); } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } if (h == head) // loop if head changed break; } }
这个方法的作用就是唤醒等待队列中线程,现在资源已经空闲了,等待的线程可以唤醒来获取锁了。
排他写锁的实现原理分析
排他写锁的实现原理其实和ReentrantLock一致。我们只看几处和共享读锁不同的地方。
//公平锁实现 protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && //判断当前线程是否还有前节点 compareAndSetState(0, acquires)) {//CAS修改state //获取锁成功,设置锁的持有线程为当前线程 setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) {//该线程之前已经拿到锁 int nextc = c + acquires; //重入的体现 if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); //更新State return true; } return false; }
其实非公平锁的实现也差不多,只不过少了!hasQueuedPredecessors()
它不会去判断当前线程是否还有前驱节点,直接就开始获取锁了。
unlock方法也差不多我就不赘述了。
来源:https://www.cnblogs.com/zofun/p/12206876.html