POJ2299 Ultra-QuickSort(归并排序求逆序数)

允我心安 提交于 2020-01-15 06:35:27

 

归并排序求逆序数

 
Time Limit:7000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
 

Description


In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,

Ultra-QuickSort produces the output 
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

题目大意:

给出长度为n的序列,每次只能交换相邻的两个元素,问至少要交换几次才使得该序列为递增序列。

刚刚学了时间复杂度, 用归并排序Mergesort了,O(nlogn),省时,不会超时。

这里用归并排序并不是为了求交换次数,而是为了求序列的逆序数,而一个乱序序列的逆序数 = 在只允许相邻两个元素交换的条件下,得到有序序列的交换次数。

 

案例中的

9 1 0 5 4

要把它排列为升序0,1,4,5,9

而对于序列9 1 0 5 4

9后面却有4个比9小的元素,因此9的逆序数为4

1后面只有1个比1小的元素0,因此1的逆序数为1

0后面不存在比他小的元素,因此0的逆序数为0

5后面存在1个比他小的元素4, 因此5的逆序数为1

4是序列的最后元素,逆序数为0

因此序列9 1 0 5 4的逆序数 t=4+1+0+1+0 = 6  ,就是交换次数

 

注意:保存逆序数时,必须要用long long型定义,会WA的。。。 

 

 

#include<iostream>
using namespace std;
long long total;
int n,a[500005];
int t[500005];
void merge_sort(int *a,int x,int y,int *t)
{
    if(y-x>1)
    {
        int m=x+(y-x)/2;
        int p=x,q=m,i=x;
        merge_sort(a,x,m,t);
        merge_sort(a,m,y,t);
        while(p<m||q<y)
        {
            if(q>=y||(p<m&&a[p]<=a[q]))
                t[i++]=a[p++];
            else
            {
                t[i++]=a[q++];
                total+=m-p;//由于合并操作是从小到大进行的,当右边的a【j】复制到T中时,左边还没来得及复制到T得那些数就是左边所有比a【j】大的数,即a【j】的逆序数
            }
        }
        for(i=x; i<y; i++)
            a[i]=t[i];
    }
}
int main()
{
    while(cin>>n&&n)
    {
        total=0;
        for(int i=0; i<n; i++)
            cin>>a[i];
        merge_sort(a,0,n,t);
        cout<<total<<endl;
    }
    return 0;
}

 

 

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!