问题
MCVE
df = pd.DataFrame({
'Cat': ['SF', 'W', 'F', 'R64', 'SF', 'F'],
'ID': [1, 1, 1, 2, 2, 2]
})
df.Cat = pd.Categorical(
df.Cat, categories=['R64', 'SF', 'F', 'W'], ordered=True)
As you can see, I've define an ordered categorical column on Cat
. To verify, check;
0 SF
1 W
2 F
3 R64
4 SF
5 F
Name: Cat, dtype: category
Categories (4, object): [R64 < SF < F < W]
I want to find the largest category PER ID. Doing groupby
+ max
works.
df.groupby('ID').Cat.max()
ID
1 W
2 F
Name: Cat, dtype: object
But I don't want ID to be the index, so I specify as_index=False
.
df.groupby('ID', as_index=False).Cat.max()
ID Cat
0 1 W
1 2 SF
Oops! Now, the max is taken lexicographically. Can anyone explain whether this is intended behaviour? Or is this a bug?
Note, for this problem, the workaround is df.groupby('ID').Cat.max().reset_index()
.
Note,
>>> pd.__version__
'0.22.0'
回答1:
This is not intended behavior, it's a bug.
Source diving shows the flag does two completely different things. The one simply ignores grouper levels and names, it just takes the values with a new range index. The other one clearly keeps them.
来源:https://stackoverflow.com/questions/50778770/weird-behaviour-with-groupby-on-ordered-categorical-columns