问题
I am having trouble understanding one of a Leetcode Problem.
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
Solution:
int numSquares(int n) {
static vector<int> dp {0};
while (dp.size() <= n) {
int m = dp.size(), squares = INT_MAX;
for (int i=1; i*i<=m; ++i)
squares = min(squares, dp[m-i*i] + 1);
dp.push_back(squares);
}
return dp[n];
}
I really dont understand what is going on with min(squares,dp[m-i*i]+1)
. Can you please explain?
thx.
回答1:
The solution, which you have mentioned, is the bottom-up version of the algorithm. In order to understand the algorithm better, I would advice to look at the top-down version of the solution.
Let's look closer at the recurrence relation for the calculation of the minimal amount of the perfect squares, contained inside the number N
. For given N
and any arbitrary number x
(which is the candidate for being considered as the member of the shortest sequence of numbers, whose perfect squares sums-up to N
):
f(N, x) = 0 , if N = 0 ;
f(N, x) = min( f(N, x + 1), f(N - x^2, 1) ) , if N >= x^2 ;
f(N, x) = +infinity , otherwise ;
solution(N) = f(N, 1)
Now, having in mind the considered recurrence, we can construct the top-down solution (I will implement it in Java):
int solve(int n) {
return solve(n, 1);
}
int solve(int n, int curr) {
if (n == 0) {
return 0;
}
if ((curr * curr) > n) {
return POSITIVE_INFINITY;
}
// if curr belongs to the shortest sequence of numbers, whose perfect squares sums-up to N
int inclusive = solve(n - (curr * curr), 1) + 1;
// otherwise:
int exclusive = solve(n, curr + 1);
return Math.min(exclusive, inclusive);
}
The runtime complexity of the given solution is exponential.
However, we can notice that there are only [1..n]
possible values of n
and [1..sqrt(n)]
values of curr
. Which, implies, that there are only n * sqrt(n)
combinations of different values of arguments of the function solve
. Hence, we can create the memoization table and reduce the complexity of the top-down solution:
int solve(int n) {
// initialization of the memoization table
int[][] memoized = new int[n + 1][(int) (Math.sqrt(n) + 1)];
for (int[] row : memoized) {
Arrays.fill(row, NOT_INITIALIZED);
}
return solve(n, 1, memoized);
}
int solve(int n, int curr, int[][] memoized) {
if (n == 0) {
return 0;
}
if ((curr * curr) > n) {
return POSITIVE_INFINITY;
}
if (memoized[n][curr] != NOT_INITIALIZED) {
// the sub-problem has been already solved
return memoized[n][curr];
}
int exclusive = solve(n, curr + 1, memoized);
int inclusive = solve(n - (curr * curr), 1, memoized) + 1;
memoized[n][curr] = Math.min(exclusive, inclusive);
return memoized[n][curr];
}
Given solution has the runtime complexity O(N * sqrt(N))
.
However, it is possible to reduce the runtime complexity to O(N)
.
As far as the recurrence relation for f(N, x)
depends only on f(N, x + 1)
and f(N - x^2, 1)
- it means, that the relation can be equivalently transformed to the loop form:
f(0) = 0
f(N) = min( f(N - x^2) + 1 ) , across the all x, such that x^2 <= N
In this case we have to memoize the f(N)
only for N
different values of its argument.
Hence, below presented the O(N)
top-down solution:
int solve_top_down_2(int n) {
int[] memoized = new int[n + 1];
Arrays.fill(memoized, NOT_INITIALIZED);
return solve_top_down_2(n, memoized);
}
int solve_top_down_2(int n, int[] memoized) {
if (n == 0) {
return 0;
}
if (memoized[n] != NOT_INITIALIZED) {
return memoized[n];
}
// if 1 belongs to the shortest sequence of numbers, whose perfect squares sums-up to N
int result = solve_top_down_2(n - (1 * 1)) + 1;
for (int curr = 2; (curr * curr) <= n; curr++) {
// check, whether some other number belongs to the shortest sequence of numbers, whose perfect squares sums-up to N
result = Math.min(result, solve_top_down_2(n - (curr * curr)) + 1);
}
memoized[n] = result;
return result;
}
Finally, the presented top-down solution can be easily transformed to the bottom-up solution:
int solve_bottom_up(int n) {
int[] memoized = new int[n + 1];
for (int i = 1; i <= n; i++) {
memoized[i] = memoized[i - (1 * 1)] + 1;
for (int curr = 2; (curr * curr) <= i; curr++) {
memoized[i] = Math.min(memoized[i], memoized[i - (curr * curr)] + 1);
}
}
return memoized[n];
}
回答2:
I had a hard time with this too. Let's take the example number n=13.
- First thing to observe is that: 1^2 =1, 2^2=4, 3^2=9, 4^2=16
- So 13 can't be composed of anything greater than 3^2. Generically speaking, n can only be composed of numbers 1 to sqrt(n)
- So we are left with some combination of the square of the following numbers: 1, 2, or 3.
- Next thing we want to do is come up with the recursive formula. This took me a long time to understand. But we basically want to dwindle down to work with a smaller n (that's the whole point of recursion). We do that by subtracting our candidate perfect squares from n. For example:
- If we try 3, then dp(13)=dp(13-3^2)+1=dp(4)+1. The +1 is incrementing the count by 1 and is from the the fact that we already took off a perfect square from 13, which was the 3^2. Each +1 is a perfect square that we took off.
- If we try 2, then dp(13)=13-2^2=dp(9)+1
- If we try 1, then dp(13)=13-1^2=dp(12)+1
So we are left with comparing which is the smallest out of dp(4), dp(9), and dp(12). Hence the min.
回答3:
The clarification to your confusion lies in the question itself. The structure dp
holds the least number of squares that sum up to the index position of dp
.
E.g., squares
would return 3
when n=9
, but least possible is 1
, which is what dp[m- i*i] + 1
would return.
来源:https://stackoverflow.com/questions/39031099/perfect-square-in-leetcode