Transpose and widen Data

こ雲淡風輕ζ 提交于 2020-01-13 19:17:11

问题


My panda data frame looks like as follows:

Country Code  1960  1961  1962  1963  1964  1965  1966  1967  1968  ... 2015
ABW  2.615300  2.734390  2.678430  2.929920  2.963250  3.060540 ...  4.349760
AFG  0.249760  0.218480  0.210840  0.217240  0.211410  0.209910 ...  0.671330  
ALB  NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ... 1.12214
...

How can I transpose it that it looks like as follows?

Country_Code  Year  Econometric_Metric
ABW  1960  2.615300
ABW  1961  2.734390
ABW  1962  2.678430
...
ABW  2015  4.349760
AFG  1960  0.249760
AFG  1961  0.218480
AFG  1962  0.210840
...
AFG  2015  0.671330
ALB  1960  NaN
ALB  1961  NaN
ALB  1962  NaN 
ALB  2015  1.12214
...

Thanks.


回答1:


I think need melt with sort_values:

df = (df.melt(['Country Code'], var_name='Year', value_name='Econometric_Metric')
        .sort_values(['Country Code','Year'])
        .reset_index(drop=True))

Or set_index with stack:

df = (df.set_index(['Country Code'])
        .stack(dropna=False)
        .reset_index(name='Econometric_Metric')
        .rename(columns={'level_1':'Year'}))

print (df.head(10))
  Country Code  Year  Econometric_Metric
0          ABW  1960             2.61530
1          ABW  1961             2.73439
2          ABW  1962             2.67843
3          ABW  1963             2.92992
4          ABW  1964             2.96325
5          ABW  1965             3.06054
6          ABW  1966                 NaN
7          ABW  1967                 NaN
8          ABW  1968                 NaN
9          ABW  2015             4.34976


来源:https://stackoverflow.com/questions/49423787/transpose-and-widen-data

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!