问题
I am a beginner with Rcpp. Currently I wrote a Rcpp code, which was applied on two 3 dimensional arrays: Array1
and Array2
. Suppose Array1
has dimension (1000, 100, 40) and Array2
has dimension (1000, 96, 40).
I would like to perform wilcox.test
using:
wilcox.test(Array1[i, j,], Array2[i,,])
In R, I wrote nested for
loops that completed the calculation in about a half hour.
Then, I wrote it into Rcpp. The calculation within Rcpp took an hour to achieve the same results. I thought it should be faster since it is written in C++ language. I guess that my style of coding is the cause of the low efficient.
The following is my Rcpp code, would you mind helping me find out what improvement should I make please? I appreciate it!
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector Cal(NumericVector Array1,NumericVector Array2,Function wilc) {
NumericVector vecArray1(Array1);
IntegerVector arrayDims1 = vecArray1.attr("dim");
NumericVector vecArray2(Array2);
IntegerVector arrayDims2 = vecArray2.attr("dim");
arma::cube cubeArray1(vecArray1.begin(), arrayDims1[0], arrayDims1[1], arrayDims1[2], false);
arma::cube cubeArray2(vecArray2.begin(), arrayDims2[0], arrayDims2[1], arrayDims2[2], false);
arma::mat STORE=arma::mat(arrayDims1[0], arrayDims1[1]);
for(int i=0;i<arrayDims1[1];i++)
{
for(int j=0;j<arrayDims1[0];j++){
arma::vec v_cl=cubeArray1.subcube(arma::span(j),arma::span(i),arma::span::all);
//arma::mat tem=cubeArray2.subcube(arma::span(j),arma::span::all,arma::span::all);
//arma::vec v_ct=arma::vectorise(tem);
arma::vec v_ct=arma::vectorise(cubeArray2.subcube(arma::span(j),arma::span::all,arma::span::all));
Rcpp::List resu=wilc(v_cl,v_ct);
STORE(j,i)=resu[2];
}
}
return(Rcpp::wrap(STORE));
}
The function wilc
will be wilcox.test
from R.
The following is part of my R code for implementing the above idea, where CELLS
and CTRLS
are two 3D array in R.
for(i in 1:ncol(CELLS)) {
if(T){ print(i) }
for (j in 1:dim(CELLS)[1]) {
wtest = wilcox.test(CELLS[j,i,], CTRLS[j,,])
TSTAT_clcl[j,i] = wtest$p.value
}
}
回答1:
Then, I wrote it into Rcpp. The calculation within Rcpp took an hour to achieve the same results. I thought it should be faster since it is written in C++ language.
The required disclaimer:
Embedding R code in C++ and expecting a speed up is a fool's game. You will need to rewrite wilcox.test
full in C++ instead of making a call to R. Otherwise, you lose whatever speed up advantage you get.
In particular, I wrote up a post illustrating this conundrum regarding the using the diff
function in R. Within the post, I detailed comparing a pure C++ implementation, an C++ implementation using an R function within the routine, and a pure R implementation. Stealing the microbenchmark
illustrates the above issue.
expr min lq mean median uq max neval
arma_fun 26.117 27.318 37.54248 28.218 29.869 751.087 100
r_fun 127.883 134.187 212.81091 138.390 151.148 1012.856 100
rcpp_fun 250.663 265.972 356.10870 274.228 293.590 1430.426 100
Thus, a pure C++ implementation had the largest speed up.
Hence, the take away is the need to translate the wilcox.test R routine code to a pure C++ implementation to drop the run time. Otherwise, it is meaningless to write the code in C++ because the C++ component must stop and await results from R before continuing. This traditionally has a lot of overhead to ensure the data is well protected.
来源:https://stackoverflow.com/questions/42292546/rcpp-programming-efficiency