问题
I am trying to use bvp4c to solve a system of 4 odes. The issue is that one of the boundaries is unknown.
Can bvp4c handle this? In my code L is the unknown I am solving for.
I get an error message printed below.
function mat4bvp
L = 8;
solinit = bvpinit(linspace(0,L,100),@mat4init);
sol = bvp4c(@mat4ode,@mat4bc,solinit);
sint = linspace(0,L);
Sxint = deval(sol,sint);
end
% ------------------------------------------------------------
function dtdpdxdy = mat4ode(s,y,L)
Lambda = 0.3536;
dtdpdxdy = [y(2)
-sin(y(1)) + Lambda*(L-s)*cos(y(1))
cos(y(1))
sin(y(1))];
end
% ------------------------------------------------------------
function res = mat4bc(ya,yb,L)
res = [ ya(1)
ya(2)
ya(3)
ya(4)
yb(1)];
end
% ------------------------------------------------------------
function yinit = mat4init(s)
yinit = [ cos(s)
0
0
0
];
end
Unfortunately I get the following error message ;
>> mat4bvp
Not enough input arguments.
Error in mat4bvp>mat4ode (line 13)
-sin(y(1)) + Lambda*(L-s)*cos(y(1))
Error in bvparguments (line 105)
testODE = ode(x1,y1,odeExtras{:});
Error in bvp4c (line 130)
bvparguments(solver_name,ode,bc,solinit,options,varargin);
Error in mat4bvp (line 4)
sol = bvp4c(@mat4ode,@mat4bc,solinit);
回答1:
One trick to transform a variable end point into a fixed one is to change the time scale. If x'(t)=f(t,x(t))
is the differential equation, set t=L*s
, s
from 0
to 1
, and compute the associated differential equation for y(s)=x(L*s)
y'(s)=L*x'(L*s)=L*f(L*s,y(s))
The next trick to employ is to transform the global variable into a part of the differential equation by computing it as constant function. So the new system is
[ y'(s), L'(s) ] = [ L(s)*f(L(s)*s,y(s)), 0 ]
and the value of L
occurs as additional free left or right boundary value, increasing the number of variables = dimension of the state vector to the number of boundary conditions.
I do not have Matlab readily available, in Python with the tools in scipy this can be implemented as
from math import sin, cos
import numpy as np
from scipy.integrate import solve_bvp, odeint
import matplotlib.pyplot as plt
# The original function with the interval length as parameter
def fun0(t, y, L):
Lambda = 0.3536;
#print t,y,L
return np.array([ y[1], -np.sin(y[0]) + Lambda*(L-t)*np.cos(y[0]), np.cos(y[0]), np.sin(y[0]) ]);
# Wrapper function to apply both tricks to transform variable interval length to a fixed interval.
def fun1(s,y):
L = y[-1];
dydt = np.zeros_like(y);
dydt[:-1] = L*fun0(L*s, y[:-1], L);
return dydt;
# Implement evaluation of the boundary condition residuals:
def bc(ya, yb):
return [ ya[0],ya[1], ya[2], ya[3], yb[0] ];
# Define the initial mesh with 5 nodes:
x = np.linspace(0, 1, 3)
# This problem has multiple solutions. Try two initial guesses.
L_a=8
L_b=9
y_a = odeint(lambda y,t: fun1(t,y), [0,0,0,0,L_a], x)
y_b = odeint(lambda y,t: fun1(t,y), [0,0,0,0,L_b], x)
# Now we are ready to run the solver.
res_a = solve_bvp(fun1, bc, x, y_a.T)
res_b = solve_bvp(fun1, bc, x, y_b.T)
L_a = res_a.sol(0)[-1]
L_b = res_b.sol(0)[-1]
print "L_a=%.8f, L_b=%.8f" % ( L_a,L_b )
# Plot the two found solutions. The solution are in a spline form, use this to produce a smooth plot.
x_plot = np.linspace(0, 1, 100)
y_plot_a = res_a.sol(x_plot)[0]
y_plot_b = res_b.sol(x_plot)[0]
plt.plot(L_a*x_plot, y_plot_a, label='L=%.8f'%L_a)
plt.plot(L_b*x_plot, y_plot_b, label='L=%.8f'%L_b)
plt.legend()
plt.xlabel("t")
plt.ylabel("y")
plt.grid(); plt.show()
which produces
Trying different initial values for L
finds other solutions on quite different scales, among them
L=0.03195111
L=0.05256775
L=0.05846539
L=0.06888907
L=0.08231966
L=4.50411522
L=6.84868060
L=20.01725616
L=22.53189063
来源:https://stackoverflow.com/questions/42936333/bvp4c-solve-for-unknown-boundary