原文链接点这!
下面提供的论文,可以说基本都是经典中的经典。读完这些论文,相信对推荐系统的认识肯定会有质的飞越:(不够再找我。O(∩_∩)O~)
综述类:
1、Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions。最经典的推荐算法综述
2、Collaborative Filtering Recommender Systems. JB Schafer 关于协同过滤最经典的综述
3、Hybrid Recommender Systems: Survey and Experiments
4、项亮的博士论文《动态推荐系统关键技术研究》
5、个性化推荐系统的研究进展.周涛等
6、Recommender systems L Lü, M Medo, CH Yeung, YC Zhang, ZK Zhang, T Zhou Physics Reports 519 (1), 1-49 (https://arxiv.org/abs/1202.1112)
协同过滤:
1、matrix factorization techniques for recommender systems. Y Koren
2、Using collaborative filtering to weave an information Tapestry. David Goldberg (协同过滤第一次被提出)
3、Item-Based Collaborative Filtering Recommendation Algorithms. Badrul Sarwar , George Karypis, Joseph Konstan .etl
4、Application of Dimensionality Reduction in Recommender System – A Case Study. Badrul M. Sarwar, George Karypis, Joseph A. Konstan etl
5、Probabilistic Memory-Based Collaborative Filtering. Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu,and Hans-Peter Kriegel
6、Recommendation systems:a probabilistic analysis. Ravi Kumar Prabhakar Raghavan.etl
7、Amazon.com recommendations: item-to-item collaborative filtering. Greg Linden, Brent Smith, and Jeremy York
8、Evaluation of Item-Based Top- N Recommendation Algorithms. George Karypis
9、Probabilistic Matrix Factorization. Ruslan Salakhutdinov
10、Tensor Decompositions,Alternating Least Squares and other Tales. Pierre Comon, Xavier Luciani, André De Almeida
基于内容的推荐:
1、Content-Based Recommendation Systems. Michael J. Pazzani and Daniel Billsus
基于标签的推荐:
1、Tag-Aware Recommender Systems: A State-of-the-Art Survey. Zi-Ke Zhang(张子柯), Tao Zhou(周 涛), and Yi-Cheng Zhang(张翼成)
推荐评估指标:
1、推荐系统评价指标综述. 朱郁筱,吕琳媛
2、Accurate is not always good:How Accuacy Metrics have hurt Recommender Systems
3、Evaluating Recommendation Systems. Guy Shani and Asela Gunawardana
4、Evaluating Collaborative Filtering Recommender Systems. JL Herlocker
推荐多样性和新颖性:
1、Improving recommendation lists through topic diversification. Cai-Nicolas ZieglerSean M. McNee, Joseph A.Konstan,Georg Lausen
2、Fusion-based Recommender System for Improving Serendipity
3、Maximizing Aggregate Recommendation Diversity:A Graph-Theoretic Approach
4、The Oblivion Problem:Exploiting forgotten items to improve Recommendation diversity
5、A Framework for Recommending Collections
6、Improving Recommendation Diversity. Keith Bradley and Barry Smyth
推荐系统中的隐私性保护:
1、Collaborative Filtering with Privacy. John Canny
2、Do You Trust Your Recommendations? An Exploration Of Security and Privacy Issues in Recommender Systems. Shyong K “Tony” Lam, Dan Frankowski, and John Ried.
3、Privacy-Enhanced Personalization. Alfred Kobsa.etl
4、Differentially Private Recommender Systems:Building Privacy into the Netflix Prize Contenders. Frank McSherry and Ilya Mironov Microsoft Research,Silicon Valley Campus
5、When being Weak is Brave: Privacy Issues in Recommender Systems. Naren Ramakrishnan, Benjamin J. Keller,and Batul J. Mirza
推荐冷启动问题:
1、Tied Boltzmann Machines for Cold Start Recommendations. Asela Gunawardana.etl
2、Pairwise Preference Regression for Cold-start Recommendation. Seung-Taek Park, Wei Chu
3、Addressing Cold-Start Problem in Recommendation Systems. Xuan Nhat Lam.etl
4、Methods and Metrics for Cold-Start Recommendations. Andrew I. Schein, Alexandrin P opescul, Lyle H. U ngar
bandit(老虎机算法,可缓解冷启动问题):
1、Bandits and Recommender Systems. Jeremie Mary, Romaric Gaudel, Philippe Preux
2、Multi-Armed Bandit Algorithms and Empirical Evaluation
基于社交网络的推荐:
1.、Social Recommender Systems. Ido Guy and David Carmel
2、A Social Networ k-Based Recommender System(SNRS). Jianming He and Wesley W. Chu
3、Measurement and Analysis of Online Social Networks.
4、Referral Web:combining social networks and collaborative filtering
基于知识的推荐:
1、Knowledge-based recommender systems. Robin Burke
2、Case-Based Recommendation. Barry Smyth
3、Constraint-based Recommender Systems: Technologies and Research Issues. A. Felfernig. R. Burke
来源:CSDN
作者:追枫萨
链接:https://blog.csdn.net/m0_38052384/article/details/103842369