pandas: Calculated column based on values in one column

ε祈祈猫儿з 提交于 2020-01-06 10:56:32

问题


I have columns like this in a csv file (I load it using read_csv('fileA.csv', parse_dates=['ProcessA_Timestamp']))

Item    ProcessA_Timestamp
'A'    2014-06-08 03:32:20
'B'    2014-06-08 03:32:20
'A'    2014-06-08 03:33:19
'C'    2014-06-08 03:33:20
'B'    2014-06-08 03:33:40
'D'    2014-06-08 03:38:20

How would I go about creating a column called ProcessA_ProcessingTime, which would be the time difference between last time an item occurs in the table - first time it occurs in the table.

Similarly, I have other data frames (which I'm not sure if they should be merged into one dataframe).. that have their own Process*_Timestamps.

Finally, I need to create a table, where the data is like this:

Item ProcessA_ProcessingTime ProcessB_ProcessingTime ... ProcessX_ProcessingTime
'A'                 00:00:59                  ...
'B'                 00:01:21
'C'         NOT FINISHED YET
'D'         NOT FINISHED YET

回答1:


You can use the pandas groupby-apply combo. Group the dataframe by "Item" and apply a function that calculates the process time. Something like:

import pandas as pd

def calc_process_time(row):
    ts = row["ProcessA_Timestamp].values
    if len(ts) == 1:
        return pd.NaT
    else:
        return ts[-1] - ts[0] #last time - first time

df.groupby("Item").apply(calc_process_time)


来源:https://stackoverflow.com/questions/24103795/pandas-calculated-column-based-on-values-in-one-column

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!