yqueue 和 ypipe
zmq号称是”史上最快的消息队列”,由此可见zmq中最重要的数据结构就是队列。
zmq的队列主要由yqueue和ypipe实现。yqueue是队列的基本操作,以下首先分析yqueue的实现。
// Individual memory chunk to hold N elements. // Individual memory chunk to hold N elements. struct chunk_t { T values [N]; chunk_t *prev; chunk_t *next; }; // Back position may point to invalid memory if the queue is empty, // while begin & end positions are always valid. Begin position is // accessed exclusively be queue reader (front/pop), while back and // end positions are accessed exclusively by queue writer (back/push). chunk_t *begin_chunk; int begin_pos; chunk_t *back_chunk; int back_pos; chunk_t *end_chunk; int end_pos; // People are likely to produce and consume at similar rates. In // this scenario holding onto the most recently freed chunk saves // us from having to call malloc/free. atomic_ptr_t<chunk_t> spare_chunk;
在yqueue中有一个重要的结构体chunk_t,他是yqueue高效的关键因素。
内存的申请和释放很浪费效率。yqueue为了避免频繁的内存操作。每次不会申请一个元素大小的内存空间。而是申请一批,这一批元素就保存在chunk_t结构体中。yqueu用三个指针和三个游标来记录chunk以及在chunk内有效的数据的索引。以以下的push操作为例,当在队列的末尾加入一个元素时,会先推断当前尾端的chunk是否还有空暇的元素。即end_pos是否等于N-1。相等则说明须要申请新的chunk_t,否则直接移动end_pos就可以。另外因为许多队列中生产和消费的速率比較一致,所以yqueue用一个spare_chunk来保存刚刚释放的chunk。这样当须要申请新的chunk时就能够直接使用spare_chunk所记录的chunk了。除了push外,yqueue还提供了pop和unpush操作,实现原理和push相似。
// Adds an element to the back end of the queue. inline void push () { back_chunk = end_chunk; back_pos = end_pos; if (++end_pos != N) return; chunk_t *sc = spare_chunk.xchg (NULL); if (sc) { end_chunk->next = sc; sc->prev = end_chunk; } else { end_chunk->next = (chunk_t*) malloc (sizeof (chunk_t)); alloc_assert (end_chunk->next); end_chunk->next->prev = end_chunk; } end_chunk = end_chunk->next; end_pos = 0; }
接下来看ypipe。ypipe继承自ypipe_base_t,ypipe_base_t抽象出了ypipe和ypipe_conflate(后面分析)的基本操作:
template <typename T> class ypipe_base_t { public: virtual ~ypipe_base_t () {} virtual void write (const T &value_, bool incomplete_) = 0; virtual bool unwrite (T *value_) = 0; virtual bool flush () = 0; virtual bool check_read () = 0; virtual bool read (T *value_) = 0; virtual bool probe (bool (*fn)(const T &)) = 0; };
ypipe包括了了一个yqueue队列和四个很重要的指针,以下是ypipe的成员变量定义:
// Allocation-efficient queue to store pipe items. // Front of the queue points to the first prefetched item, back of // the pipe points to last un-flushed item. Front is used only by // reader thread, while back is used only by writer thread. yqueue_t <T, N> queue; // Points to the first un-flushed item. This variable is used // exclusively by writer thread. T *w; // Points to the first un-prefetched item. This variable is used // exclusively by reader thread. T *r; // Points to the first item to be flushed in the future. T *f; // The single point of contention between writer and reader thread. // Points past the last flushed item. If it is NULL, // reader is asleep. This pointer should be always accessed using // atomic operations. atomic_ptr_t <T> c;
这四个指针很重要,以下来看一下他们各自的作用:
// Initialises the pipe. inline ypipe_t () { // Insert terminator element into the queue. queue.push (); // Let all the pointers to point to the terminator. // (unless pipe is dead, in which case c is set to NULL). r = w = f = &queue.back (); c.set (&queue.back ()); }
初始化时先想队列放入一个空对象作为结束符,全部指针都指向这个结束符。
// Write an item to the pipe. Don't flush it yet. If incomplete is // set to true the item is assumed to be continued by items // subsequently written to the pipe. Incomplete items are never // flushed down the stream. inline void write (const T &value_, bool incomplete_) { // Place the value to the queue, add new terminator element. queue.back () = value_; queue.push (); // Move the "flush up to here" poiter. if (!incomplete_) f = &queue.back (); } // Pop an incomplete item from the pipe. Returns true is such // item exists, false otherwise. inline bool unwrite (T *value_) { if (f == &queue.back ()) return false; queue.unpush (); *value_ = queue.back (); return true; }
f指针指向了当前未做flush操作的第一个元素,假设是写入了一条完整消息,那f指向的就是结束符。
// Flush all the completed items into the pipe. Returns false if // the reader thread is sleeping. In that case, caller is obliged to // wake the reader up before using the pipe again. inline bool flush () { // If there are no un-flushed items, do nothing. if (w == f) return true; // Try to set 'c' to 'f'. if (c.cas (w, f) != w) { // Compare-and-swap was unseccessful because 'c' is NULL. // This means that the reader is asleep. Therefore we don't // care about thread-safeness and update c in non-atomic // manner. We'll return false to let the caller know // that reader is sleeping. c.set (f); w = f; return false; } // Reader is alive. Nothing special to do now. Just move // the 'first un-flushed item' pointer to 'f'. w = f; return true; }
flush操作比較重要,除了要把w指向f外,还要推断当前pipe的read是否是sleep状态,推断的方式是用c和w作比較,c仅仅能有两个值,要么等于w,要么为空,当c为空时说明之前的check_read操作没有读到元素。check_read返回false同一时候将c置为空。
check_read的返回值决定了上层的操作策略。flush的返回值也表明了之前check_read操作是否返回了false。
// Check whether item is available for reading. inline bool check_read () { // Was the value prefetched already? If so, return. if (&queue.front () != r && r) return true; // There's no prefetched value, so let us prefetch more values. // Prefetching is to simply retrieve the // pointer from c in atomic fashion. If there are no // items to prefetch, set c to NULL (using compare-and-swap). r = c.cas (&queue.front (), NULL); // If there are no elements prefetched, exit. // During pipe's lifetime r should never be NULL, however, // it can happen during pipe shutdown when items // are being deallocated. if (&queue.front () == r || !r) return false; // There was at least one value prefetched. return true; } // Reads an item from the pipe. Returns false if there is no value. // available. inline bool read (T *value_) { // Try to prefetch a value. if (!check_read ()) return false; // There was at least one value prefetched. // Return it to the caller. *value_ = queue.front (); queue.pop (); return true; }
之前提到过check_read操作,它的返回值标记了队列中是否有数据,他使用r指针来标记当前能够读到的位置,假设r指针不在front位置处,说明有元素可读。否则就用c和front对照来推断当前是否有元素,假设没有将c置为空,表明读操作处于睡眠状态。
yqueue中指针的使用相对复杂。他们除了指向详细位置外还标记了一些状态,使用很巧妙。
dbuffer_t 和 ypipe_conflate_t
ypipe_conflate_t是ypipe_base_t的还有一种实现,和ypipe相比它的效率更高。可是数据是不安全的。
它的底层使用dbuffer_t实现的。
ypipe_conflate_t是zmq4.x版本号中新加入的一个数据结构,使用一些对数据完整性要求不高的需求,实现相对简单。这里不做详细分析。
pipe
pipe是zmq中保存消息的一个双向管道,他维护两个ypipe_base_t队列。一个inpipe,一个outpipe。他主要用于socket_base之间(进程内通讯)或者socket_base和session_base之间传递消息。以下是pipe中比較重要的成员变量:
// Underlying pipes for both directions. upipe_t *inpipe; upipe_t *outpipe; // Can the pipe be read from / written to? bool in_active; bool out_active; // High watermark for the outbound pipe. int hwm; // Low watermark for the inbound pipe. int lwm; // Number of messages read and written so far. uint64_t msgs_read; uint64_t msgs_written; // Last received peer's msgs_read. The actual number in the peer // can be higher at the moment. uint64_t peers_msgs_read; // The pipe object on the other side of the pipepair. pipe_t *peer; // Sink to send events to. i_pipe_events *sink; // States of the pipe endpoint: // active: common state before any termination begins, // delimiter_received: delimiter was read from pipe before // term command was received, // waiting_fo_delimiter: term command was already received // from the peer but there are still pending messages to read, // term_ack_sent: all pending messages were already read and // all we are waiting for is ack from the peer, // term_req_sent1: 'terminate' was explicitly called by the user, // term_req_sent2: user called 'terminate' and then we've got // term command from the peer as well. enum { active, delimiter_received, waiting_for_delimiter, term_ack_sent, term_req_sent1, term_req_sent2 } state; // If true, we receive all the pending inbound messages before // terminating. If false, we terminate immediately when the peer // asks us to. bool delay; // Identity of the writer. Used uniquely by the reader side. blob_t identity; // Pipe's credential. blob_t credential; const bool conflate;
in_active和out_active标记管道中的队列是否是活跃状态,假设队列已满或者队列为空,这两个标记则设为false,上层依据管道的状态决定是否要进行休眠或者其它操作。比方session_base假设检測到false则会把engine中相应的fd设置为reset状态。hwm和lwm是两个阈值,hwm表示当前队列已满,lwm表示当msgs_read每达到lwm时要象对面的pipe发送一条激活消息。表明已经处理了一些数据,对面的能够继续向管道内写入数据。
消息的发送机制会在接下来的章节中分析。i_pipe_events 是一个抽象类:
struct i_pipe_events { virtual ~i_pipe_events () {} virtual void read_activated (zmq::pipe_t *pipe_) = 0; virtual void write_activated (zmq::pipe_t *pipe_) = 0; virtual void hiccuped (zmq::pipe_t *pipe_) = 0; virtual void pipe_terminated (zmq::pipe_t *pipe_) = 0; };
sink是指向上层实现i_pipe_events的类的指针(session_base或者socket_base),当队列变为激活状态时。pipe须要通过sink通知上层能够从pipe中读取数据或者写入数据了。
来源:https://www.cnblogs.com/zhchoutai/p/8504775.html