Perform numpy exp function in-place

荒凉一梦 提交于 2020-01-02 05:36:09

问题


As in title, I need to perform numpy.exp on a very large ndarray, let's say ar, and store the result in ar itself. Can this operation be performed in-place?


回答1:


You can use the optional outargument of exp:

a = np.array([3.4, 5])
res = np.exp(a, a)
print(res is a)
print(a)

Output:

True
[  29.96410005  148.4131591 ]

exp(x[, out])

Calculate the exponential of all elements in the input array.

Returns

out : ndarray Output array, element-wise exponential of x.

Here all elements of a will be replaced by the result of exp. The return value res is the same as a. No new array is created




回答2:


Mike Mueller's answer is good but please note that if your array is of type int32, int, int64 etc., it will throw a TypeError. Thus, a safe way to do this is to typecast your array to float64 or float32 etc., before doing exp like,

In [12]: b
Out[12]: array([1, 2, 3, 4, 5], dtype=int32)

In [13]: np.exp(b, b)
--------------------------------------------------------------------------
TypeError: ufunc 'exp' output (typecode 'd') could not be coerced to provided 
output parameter (typecode 'i') according to the casting rule ''same_kind''

Type Casting & exp:

# in-place typecasting
In [14]: b = b.astype(np.float64, copy=False)
In [15]: b
Out[15]: array([ 1.,  2.,  3.,  4.,  5.], dtype=float64)

# modifies b in-place
In [16]: np.exp(b, b)
Out[16]: array([   2.718,    7.389,   20.086,   54.598,  148.413], dtype=float64)


来源:https://stackoverflow.com/questions/41245775/perform-numpy-exp-function-in-place

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!