问题
The leastsq method in scipy lib fits a curve to some data. And this method implies that in this data Y values depends on some X argument. And calculates the minimal distance between curve and the data point in the Y axis (dy)
But what if I need to calculate minimal distance in both axes (dy and dx)
Is there some ways to implement this calculation?
Here is a sample of code when using one axis calculation:
import numpy as np
from scipy.optimize import leastsq
xData = [some data...]
yData = [some data...]
def mFunc(p, x, y):
return y - (p[0]*x**p[1]) # is takes into account only y axis
plsq, pcov = leastsq(mFunc, [1,1], args=(xData,yData))
print plsq
I recently tryed scipy.odr library and it returns the proper results only for linear function. For other functions like y=a*x^b it returns wrong results. This is how I use it:
def f(p, x):
return p[0]*x**p[1]
myModel = Model(f)
myData = Data(xData, yData)
myOdr = ODR(myData, myModel , beta0=[1,1])
myOdr.set_job(fit_type=0) #if set fit_type=2, returns the same as leastsq
out = myOdr.run()
out.pprint()
This returns wrong results, not desired, and in some input data not even close to real. May be, there is some special ways of using it, what do I do wrong?
回答1:
scipy.odr
implements Orthogonal Distance Regression. See the instructions for basic use in the docstring:
https://github.com/scipy/scipy/blob/master/scipy/odr/odrpack.py#L27
回答2:
I've found the solution. Scipy Odrpack works noramally but it needs a good initial guess for correct results. So I divided the process into two steps.
First step: find the initial guess by using ordinaty least squares method.
Second step: substitude these initial guess in ODR as beta0 parameter.
And it works very well with an acceptable speed.
Thank you guys, your advice directed me to the right solution
回答3:
If/when you are able to invert the function described by p you may just include x-pinverted(y) in mFunc, I guess as sqrt(a^2+b^2), so (pseudo code)
return sqrt( (y - (p[0]*x**p[1]))^2 + (x - (pinverted(y))^2)
for example for
y=kx+m p=[m,k]
pinv=[-m/k,1/k]
return sqrt( (y - (p[0]+x*p[1]))^2 + (x - (pinv[0]+y*pinv[1]))^2)
But what you ask for is in some cases problematic. For example, if a polynomial (or your x^j) curve has a minimum ym at y(m) and you have a point x,y lower than ym, what kind of value do you want to return? There's not always a solution.
来源:https://stackoverflow.com/questions/9376886/orthogonal-regression-fitting-in-scipy-least-squares-method