R 中使用lm进行非线性拟合

血红的双手。 提交于 2019-12-28 17:01:09

以前只是知道R 中的lm函数能够做线性拟合,恰如函数的名字:lm= linear model

不过今天需要做非线性拟合的时候, 上网搜各种函数,包括nls、nlm等等,不过nlm的用法好像和一般的建模函数不太相同;nls函数的用法倒很像,可是却总是出error,不知道为什么。再次苦找,忽然发现其实lm函数便可以完成这个工作:

lm函数进行非线性拟合的本质是在其中加入非线性的变量,对这些非线性的变量进行线性拟合,结果还是非线性的。

library(car)
plot(USPop)
lmfit = lm(population ~ year, data = USPop) #线性拟合
lines(USPop$year, predict(lmfit))
nlmfit1 = lm(population ~ I(year^2)+year , data = USPop) #这里把一个平方项year^2用I来标记成一个变量
nlmfit1
summary(nlmfit1)
lines(USPop$year, predict(nlmfit1), col = 'red')  #非线性拟合

再上一个例子,是自己研究中的:

Type_Num = as.numeric(Type_Fac)
nlm = lm(Gene_Data ~ I(exp(-Type_Num))) #这里把一个指数函数用I包装成为线性拟合函数lm的一个变量
#nlm
summ_nlm = summary(nlm)
summ_nlm
nlm_pval = summ_nlm$coefficients[2,4]
#lm
fit_all = lm(Gene_Data ~ as.numeric(as.factor(Type)))
summ_all = summary(fit_all)
lmpval_all = summ_all$coefficients[2,4]
#make plot
plot(Gene_Data ~ (Type_Fac), xlab = 'Stage', ylab = 'Expression of Gene', 
     main = paste('Gene Expression vs Stage\n', 'non linear model pval for stages = ', nlm_pval,
                  '\n linear model pval for stages = ', lmpval_all))

points(Gene_Data ~ Type_Fac)
#add fitted lines
x = seq(.5,5.5,.001)
y =  17.2373 *exp(- x) +7.8884
head(y)
lines(x, y)  #non linear line
y2 = 15.7728 - 2.1422 * x
lines(x, y2) #linear line

我们可以看到: 非线性拟合的程度更好!

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!