问题
What is the simplest way to do a three-way exclusive OR?
In other words, I have three values, and I want a statement that evaluates to true IFF only one of the three values is true.
So far, this is what I've come up with:
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
Is there something simpler to do the same thing?
Here's the proof that the above accomplishes the task:
a = true; b = true; c = true
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false
a = true; b = true; c = false
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false
a = true; b = false; c = true
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false
a = true; b = false; c = false
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> true
a = false; b = true; c = true
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false
a = false; b = true; c = false
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> true
a = false; b = false; c = true
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> true
a = false; b = false; c = false
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false
回答1:
For exactly three terms, you can use this expression:
(a ^ b ^ c) && !(a && b && c)
The first part is true
iff one or three of the terms are true
. The second part of the expression ensures that not all three are true
.
Note that the above expression does NOT generalize to more terms. A more general solution is to actually count how many terms are true
, so something like this:
int trueCount =
(a ? 1 : 0) +
(b ? 1 : 0) +
(c ? 1 : 0) +
... // more terms as necessary
return (trueCount == 1); // or some range check expression etc
回答2:
bool result = (a?1:0)+(b?1:0)+(c?1:0) == 1;
回答3:
a^b^c
is only 1 if an uneven number of variables is 1 (two '1' would cancel each other out). So you just need to check for the case "all three are 1":
result = (a^b^c) && !(a&&b&&c)
回答4:
Another possibility:
a ? !b && !c : b ^ c
which happens to be 9 characters shorter than the accepted answer :)
回答5:
You could also try (in C):
!!a + !!b + !!c == 1
回答6:
Here's a general implementation that fails quickly when more than one bool
is found to be true
.
Usage:
XOR(a, b, c);
Code:
public static bool XOR(params bool[] bools)
{
return bools.Where(b => b).AssertCount(1);
}
public static bool AssertCount<T>(this IEnumerable<T> source, int countToAssert)
{
int count = 0;
foreach (var t in source)
{
if (++count > countToAssert) return false;
}
return count == countToAssert;
}
回答7:
f= lambda{ |a| [false, false, true].permutation.to_a.uniq.include? a }
p f.call([false, true, false])
p f.call([false, true, true])
$ true
$ false
Because I can.
回答8:
Better yet on Python:
result = (1 if a else 0)+(1 if b else 0)+(1 if c else 0) == 1
This can be used also on if statements!
It saved my day for CLI mutually exclusive arguments through Click (everyone hates click)
来源:https://stackoverflow.com/questions/3466452/xor-of-three-values