单调栈与单调队列

▼魔方 西西 提交于 2019-12-25 15:42:31

单调栈

特点

栈内的元素单调递增或者单调递减,可以求出数列中所有数的左边或右边第一个比其大或小的元素,总时间复杂度为\(O(n)\)

例子

单调栈中一般存索引
如何实现呢?
以单调递增栈求需入栈元素X的两边第一个比X小的值为例,每次有元素a[i] = X进栈时,

    // a[i] = X
    while (栈不为空 且 栈顶元素s[top] >= a[i])
        栈顶元素出栈
    // 直到栈顶元素s[top] < X或者栈为空
    
    // X入栈
    s.push(a[i]) 

当栈顶元素比a[i]大时,对于未来的a[i+1], a[i+2],...来说,比a[i]更大的栈顶元素与a[i]相比,选择a[i]始终更优
以4,2,3为例,最开始4入栈, 当需要2入栈时,由于2比4小,对于2之后的元素3来说,其左边第一个数选择了2一定不会选择4,2始终比4更优

回到正题,根据单调递增栈的特性可以得出
当X入栈时(对应s.push(a[i])),此时栈顶索引元素所指的值就是X左边第一个比X小的值, 栈为空则没有
当栈顶出栈时(对应while),此时的X为右边第一个比栈顶元素小的值
例题84. Largest Rectangle in Histogram

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        stack<int> s;
        int area = 0;
        heights.push_back(0);
        for(int i = 0; i < heights.size(); i++){
            while(!s.empty() && heights[s.top()] >= heights[i]) {
                int j = s.top();
                s.pop();
                area = max(area, heights[j] * (s.size() == 0 ? i: (i - (s.top() + 1)) ));
            }
            
            s.push(i);
        }
        
        return area;
    }
};

85. Maximal Rectangle
与上题类似,需要处理一下

单调队列

特点

队列中元素单调,队首,队尾可以出队,队尾可以入队
区间最值问题可以使用ST表和线段树来解决,但经常用于多次查询,时间复杂度为\(O(n\lg(n))\)
如果是类似于滑动窗口的区间最值,则可以用单调队列来解决,时间复杂度为\(O(n)\)
例题239. Sliding Window Maximum
这是个单调递减队列,队列维护滑动窗口,队列中位于前面且比后面小的一定不会是最大值,所以入队时可以踢出
理解了单调栈,单调队列也比较好理解
单调队列其他题目

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        deque<int> q;
        vector<int> v;
        for(int i = 0; i < k - 1; i++){
            while( !q.empty() && nums[q.back()] <= nums[i]) q.pop_back();
            
            q.push_back(i);
        }
        
        for(int i = k-1; i < nums.size(); i++){ 
            while( !q.empty() && nums[q.back()] <= nums[i]) q.pop_back();
            q.push_back(i);
            while( !q.empty() &&  i - q.front() >= k) q.pop_front();
            v.push_back(nums[q.front()]);
        }
        
        return v;
    }
};

862. Shortest Subarray with Sum at Least K

class Solution {
public:
    int shortestSubarray(vector<int>& A, int K) {
        int sum = 0;
        deque<int> q;
        int l = A.size() + 1;

        vector<int> B(l, 0);
        B[0] = 0;
        for(int i = 0; i < A.size(); i++) B[i+1] = B[i] + A[i];
        for(int i = 0; i < B.size(); i++){
          
           
            
            
            while(!q.empty() && B[i] <= B[q.back()]) q.pop_back();
            q.push_back(i);
            while(!q.empty() && B[i] - B[q.front()] >= K) {
                l = min(l, i - q.front());
                q.pop_front();
            }
            
        }
        
        return l == A.size() + 1 ? -1 : l;
    }
};  

使用单调队列的基本步骤大致为

1.满足单调性

当遍历到a[i]时,需要将a[i]入栈,首先从队列弹出在未来的遍历中一定比a[i]劣的值
在滑动窗口中的
while( !q.empty() && nums[q.back()] <= nums[i]) q.pop_back();
表示在未来的滑动窗口中一定不会使用比之前小于等于nums[i]的值

与862题中的
while(!q.empty() && B[i] <= B[q.back()]) q.pop_back();
在未来的前缀和中如果需要B[i]为首,那么B[i]越小越好,在B[i]之前且小于等于B[i]的前缀和比B[i]劣

2.i入队列

3.满足区间具体约束

在滑动窗口中
具体的约束为区间长度
while( !q.empty() &&  i - q.front() >= k) q.pop_front();

在862题中表示为
while(!q.empty() && B[i] - B[q.front()] >= K) {
            l = min(l, i - q.front());
            q.pop_front();
        }
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!