问题
I'm new in this field and I'm trying to model a simple scene in 3d out of 2d images and I dont have any info about cameras. I know that there are 3 options:
I have two images and I know the model of my camera (intrisics) that I loaded from a XML for instance
loadXMLFromFile()
=>stereoRectify()
=>reprojectImageTo3D()
I don't have them but I can calibrate my camera =>
stereoCalibrate()
=>stereoRectify()
=>reprojectImageTo3D()
I can't calibrate the camera (it is my case, because I don't have the camera that has taken the 2 images, then I need to find pair keypoints on both images with SURF, SIFT for instance (I can use any blob detector actually), then compute descriptors of these keypoints, then match keypoints from image right and image left according to their descriptors, and then find the fundamental matrix from them. The processing is much harder and would be like this:
- detect keypoints (SURF, SIFT) =>
- extract descriptors (SURF,SIFT) =>
- compare and match descriptors (BruteForce, Flann based approaches) =>
- find fundamental mat (
findFundamentalMat()
) from these pairs => stereoRectifyUncalibrated()
=>reprojectImageTo3D()
I'm using the last approach and my questions are:
1) Is it right?
2) if it's ok, I have a doubt about the last step stereoRectifyUncalibrated()
=> reprojectImageTo3D()
. The signature of reprojectImageTo3D()
function is:
void reprojectImageTo3D(InputArray disparity, OutputArray _3dImage, InputArray Q, bool handleMissingValues=false, int depth=-1 )
cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true) (in my code)
Parameters:
disparity
– Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit floating-point disparity image._3dImage
– Output 3-channel floating-point image of the same size asdisparity
. Each element of_3dImage(x,y)
contains 3D coordinates of the point(x,y)
computed from the disparity map.Q
– 4x4 perspective transformation matrix that can be obtained withstereoRectify()
.handleMissingValues
– Indicates, whether the function should handle missing values (i.e. points where the disparity was not computed). IfhandleMissingValues=true
, then pixels with the minimal disparity that corresponds to the outliers (seeStereoBM::operator()
) are transformed to 3D points with a very large Z value (currently set to 10000).ddepth
– The optional output array depth. If it is -1, the output image will haveCV_32F
depth.ddepth
can also be set toCV_16S
,CV_32S
or `CV_32F'.
How can I get the Q
matrix? Is possible to obtain the Q
matrix with F
, H1
and H2
or in another way?
3) Is there another way for obtain the xyz coordinates without calibrating the cameras?
My code is:
#include <opencv2/core/core.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/contrib/contrib.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <conio.h>
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <opencv/cvaux.h>
using namespace cv;
using namespace std;
int main(int argc, char *argv[]){
// Read the images
Mat imgLeft = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat imgRight = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
// check
if (!imgLeft.data || !imgRight.data)
return 0;
// 1] find pair keypoints on both images (SURF, SIFT):::::::::::::::::::::::::::::
// vector of keypoints
std::vector<cv::KeyPoint> keypointsLeft;
std::vector<cv::KeyPoint> keypointsRight;
// Construct the SURF feature detector object
cv::SiftFeatureDetector sift(
0.01, // feature threshold
10); // threshold to reduce
// sensitivity to lines
// Detect the SURF features
// Detection of the SIFT features
sift.detect(imgLeft,keypointsLeft);
sift.detect(imgRight,keypointsRight);
std::cout << "Number of SURF points (1): " << keypointsLeft.size() << std::endl;
std::cout << "Number of SURF points (2): " << keypointsRight.size() << std::endl;
// 2] compute descriptors of these keypoints (SURF,SIFT) ::::::::::::::::::::::::::
// Construction of the SURF descriptor extractor
cv::SurfDescriptorExtractor surfDesc;
// Extraction of the SURF descriptors
cv::Mat descriptorsLeft, descriptorsRight;
surfDesc.compute(imgLeft,keypointsLeft,descriptorsLeft);
surfDesc.compute(imgRight,keypointsRight,descriptorsRight);
std::cout << "descriptor matrix size: " << descriptorsLeft.rows << " by " << descriptorsLeft.cols << std::endl;
// 3] matching keypoints from image right and image left according to their descriptors (BruteForce, Flann based approaches)
// Construction of the matcher
cv::BruteForceMatcher<cv::L2<float> > matcher;
// Match the two image descriptors
std::vector<cv::DMatch> matches;
matcher.match(descriptorsLeft,descriptorsRight, matches);
std::cout << "Number of matched points: " << matches.size() << std::endl;
// 4] find the fundamental mat ::::::::::::::::::::::::::::::::::::::::::::::::::::
// Convert 1 vector of keypoints into
// 2 vectors of Point2f for compute F matrix
// with cv::findFundamentalMat() function
std::vector<int> pointIndexesLeft;
std::vector<int> pointIndexesRight;
for (std::vector<cv::DMatch>::const_iterator it= matches.begin(); it!= matches.end(); ++it) {
// Get the indexes of the selected matched keypoints
pointIndexesLeft.push_back(it->queryIdx);
pointIndexesRight.push_back(it->trainIdx);
}
// Convert keypoints into Point2f
std::vector<cv::Point2f> selPointsLeft, selPointsRight;
cv::KeyPoint::convert(keypointsLeft,selPointsLeft,pointIndexesLeft);
cv::KeyPoint::convert(keypointsRight,selPointsRight,pointIndexesRight);
/* check by drawing the points
std::vector<cv::Point2f>::const_iterator it= selPointsLeft.begin();
while (it!=selPointsLeft.end()) {
// draw a circle at each corner location
cv::circle(imgLeft,*it,3,cv::Scalar(255,255,255),2);
++it;
}
it= selPointsRight.begin();
while (it!=selPointsRight.end()) {
// draw a circle at each corner location
cv::circle(imgRight,*it,3,cv::Scalar(255,255,255),2);
++it;
} */
// Compute F matrix from n>=8 matches
cv::Mat fundemental= cv::findFundamentalMat(
cv::Mat(selPointsLeft), // points in first image
cv::Mat(selPointsRight), // points in second image
CV_FM_RANSAC); // 8-point method
std::cout << "F-Matrix size= " << fundemental.rows << "," << fundemental.cols << std::endl;
/* draw the left points corresponding epipolar lines in right image
std::vector<cv::Vec3f> linesLeft;
cv::computeCorrespondEpilines(
cv::Mat(selPointsLeft), // image points
1, // in image 1 (can also be 2)
fundemental, // F matrix
linesLeft); // vector of epipolar lines
// for all epipolar lines
for (vector<cv::Vec3f>::const_iterator it= linesLeft.begin(); it!=linesLeft.end(); ++it) {
// draw the epipolar line between first and last column
cv::line(imgRight,cv::Point(0,-(*it)[2]/(*it)[1]),cv::Point(imgRight.cols,-((*it)[2]+(*it)[0]*imgRight.cols)/(*it)[1]),cv::Scalar(255,255,255));
}
// draw the left points corresponding epipolar lines in left image
std::vector<cv::Vec3f> linesRight;
cv::computeCorrespondEpilines(cv::Mat(selPointsRight),2,fundemental,linesRight);
for (vector<cv::Vec3f>::const_iterator it= linesRight.begin(); it!=linesRight.end(); ++it) {
// draw the epipolar line between first and last column
cv::line(imgLeft,cv::Point(0,-(*it)[2]/(*it)[1]), cv::Point(imgLeft.cols,-((*it)[2]+(*it)[0]*imgLeft.cols)/(*it)[1]), cv::Scalar(255,255,255));
}
// Display the images with points and epipolar lines
cv::namedWindow("Right Image Epilines");
cv::imshow("Right Image Epilines",imgRight);
cv::namedWindow("Left Image Epilines");
cv::imshow("Left Image Epilines",imgLeft);
*/
// 5] stereoRectifyUncalibrated()::::::::::::::::::::::::::::::::::::::::::::::::::
//H1, H2 – The output rectification homography matrices for the first and for the second images.
cv::Mat H1(4,4, imgRight.type());
cv::Mat H2(4,4, imgRight.type());
cv::stereoRectifyUncalibrated(selPointsRight, selPointsLeft, fundemental, imgRight.size(), H1, H2);
// create the image in which we will save our disparities
Mat imgDisparity16S = Mat( imgLeft.rows, imgLeft.cols, CV_16S );
Mat imgDisparity8U = Mat( imgLeft.rows, imgLeft.cols, CV_8UC1 );
// Call the constructor for StereoBM
int ndisparities = 16*5; // < Range of disparity >
int SADWindowSize = 5; // < Size of the block window > Must be odd. Is the
// size of averaging window used to match pixel
// blocks(larger values mean better robustness to
// noise, but yield blurry disparity maps)
StereoBM sbm( StereoBM::BASIC_PRESET,
ndisparities,
SADWindowSize );
// Calculate the disparity image
sbm( imgLeft, imgRight, imgDisparity16S, CV_16S );
// Check its extreme values
double minVal; double maxVal;
minMaxLoc( imgDisparity16S, &minVal, &maxVal );
printf("Min disp: %f Max value: %f \n", minVal, maxVal);
// Display it as a CV_8UC1 image
imgDisparity16S.convertTo( imgDisparity8U, CV_8UC1, 255/(maxVal - minVal));
namedWindow( "windowDisparity", CV_WINDOW_NORMAL );
imshow( "windowDisparity", imgDisparity8U );
// 6] reprojectImageTo3D() :::::::::::::::::::::::::::::::::::::::::::::::::::::
//Mat xyz;
//cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true);
//How can I get the Q matrix? Is possibile to obtain the Q matrix with
//F, H1 and H2 or in another way?
//Is there another way for obtain the xyz coordinates?
cv::waitKey();
return 0;
}
回答1:
StereoRectifyUncalibrated calculates simply planar perspective transformation not rectification transformation in object space. It is necessary to convert this planar transformation to object space transformation to extract Q matrice, and i think some of the camera calibration parameters are required for it( like camera intrinsics ). There may have some research topics ongoing with this subject.
You may have add some steps for estimating camera intrinsics, and extracting relative orientation of cameras to make your flow work right. I think camera calibration parameters are vital for extracting proper 3d structure of the scene, if there is no active lighting method is used.
Also bundle block adjustment based solutions are required for refining all estimated values to more accurate values.
回答2:
the procedure looks OK to me .
as far as I know, regarding Image based 3D modelling, cameras are explicitly calibrated or implicitly calibrated. you don't want to explicitly calibrating the camera. you will make use of those things anyway. matching corresponding point pairs are definitely a heavily used approach.
回答3:
I think you need to use StereoRectify to rectify your images and get Q. This function needs two parameters (R and T) the rotation and translation between two cameras. So you can compute the parameters using solvePnP. This function needs some 3d real coordinates of the certain object and 2d points in images and their corresponding points
来源:https://stackoverflow.com/questions/9026567/3d-reconstruction-from-2-images-without-info-about-the-camera