How to identify repeated occurrences of a string column in Hive?

谁说我不能喝 提交于 2019-12-24 07:24:06

问题


I have a view like this in Hive:

id        sequencenumber          appname
242539622              1          A
242539622              2          A
242539622              3          A
242539622              4          B
242539622              5          B
242539622              6          C
242539622              7          D
242539622              8          D
242539622              9          D
242539622             10          B
242539622             11          B
242539622             12          D
242539622             13          D
242539622             14          F 

I'd like to have, per each id, the following view:

id        sequencenumber          appname    appname_c
242539622              1          A             A
242539622              2          A             A
242539622              3          A             A
242539622              4          B             B_1
242539622              5          B             B_1
242539622              6          C             C
242539622              7          D             D_1
242539622              8          D             D_1
242539622              9          D             D_1
242539622             10          B             B_2
242539622             11          B             B_2
242539622             12          D             D_2
242539622             13          D             D_2
242539622             14          F             F 

Or anything close to this, that can identify re-occurrence of a given event in the sequence.

My ultimate goal is to calculate time spent in each group of events (or state if you wish in the context of Markov modeling) taking into account if there is any loop-back. For example, time spent in B_1 in the above example can be very compared to B_2.

Have searched window functions in Hive (link) but I think they cannot to conduct row-wise comparisons like R/Python does.


回答1:


Solution using Hive window functions. I used your data to test it, remove your_table CTE and use your table instead. The result is as expected.

with your_table as (--remove this CTE, use your table instead
select stack(14,
'242539622', 1,'A',
'242539622', 2,'A',
'242539622', 3,'A',
'242539622', 4,'B',
'242539622', 5,'B',
'242539622', 6,'C',
'242539622', 7,'D',
'242539622', 8,'D',
'242539622', 9,'D',
'242539622',10,'B',
'242539622',11,'B',
'242539622',12,'D',
'242539622',13,'D',
'242539622',14,'F'
) as (id,sequencenumber,appname)
) --remove this CTE, use your table instead

select id,sequencenumber,appname, 
       case when sum(new_grp_flag) over(partition by id, group_name) = 1 then appname --only one group of consequent runs exists (like A)
            else        
            nvl(concat(group_name, '_', 
                       sum(new_grp_flag) over(partition by id, group_name order by sequencenumber) --rolling sum of new_group_flag
                       ),appname) 
        end appname_c       
from
(       

select id,sequencenumber,appname,
       case when appname=prev_appname or appname=next_appname then appname end group_name, --identify group of the same app
       case when appname<>prev_appname or prev_appname is null then 1 end new_grp_flag     --one 1 per each group
from       
(
select id,sequencenumber,appname,
       lag(appname)  over(partition by id order by sequencenumber) prev_appname, --need these columns
       lead(appname) over(partition by id order by sequencenumber) next_appname  --to identify groups of records w same app
from your_table --replace with your table
)s
)s
order by id,sequencenumber
;

Result:

OK
id        sequencenumber     appname    appname_c
242539622       1       A       A
242539622       2       A       A
242539622       3       A       A
242539622       4       B       B_1
242539622       5       B       B_1
242539622       6       C       C
242539622       7       D       D_1
242539622       8       D       D_1
242539622       9       D       D_1
242539622       10      B       B_2
242539622       11      B       B_2
242539622       12      D       D_2
242539622       13      D       D_2
242539622       14      F       F
Time taken: 232.319 seconds, Fetched: 14 row(s)



回答2:


You need to do 2 window functions to achieve that result.

Using pyspark and assuming df is your dataframe :

from pyspark.sql import functions as F, Window

df.withColumn(
    "fg",
    F.lag("appname").over(Window.partitionBy("id").orderBy("sequencenumber)
).withColumn(
    "fg",
    F.when(
        F.col("fg")==F.col("id"),
        0
    ).otherwise(1)
).withColumn(
    "fg",
    F.sum("fg").over(Window.partitionBy("id", "appname"))
).show()


来源:https://stackoverflow.com/questions/55329678/how-to-identify-repeated-occurrences-of-a-string-column-in-hive

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!