sparkr

What is difference between dataframe created using SparkR and dataframe created using Sparklyr?

可紊 提交于 2021-02-11 12:32:33
问题 I am reading a parquet file in Azure databricks: Using SparkR > read.parquet() Using Sparklyr > spark_read_parquet() Both the dataframes are different, Is there any way to convert SparkR dataframe into the sparklyr dataframe and vice-versa ? 回答1: sparklyr creates tbl_spark. This is essentially just a lazy query written in Spark SQL. SparkR creates a SparkDataFrame which is more of a collection of data that is organized using a plan. In the same way you can't use a tbl as a normal data.frame

Not able to to convert R data frame to Spark DataFrame

做~自己de王妃 提交于 2021-01-29 03:16:58
问题 When I try to convert my local dataframe in R to Spark DataFrame using: raw.data <- as.DataFrame(sc,raw.data) I get this error: 17/01/24 08:02:04 WARN RBackendHandler: cannot find matching method class org.apache.spark.sql.api.r.SQLUtils.getJavaSparkContext. Candidates are: 17/01/24 08:02:04 WARN RBackendHandler: getJavaSparkContext(class org.apache.spark.sql.SQLContext) 17/01/24 08:02:04 ERROR RBackendHandler: getJavaSparkContext on org.apache.spark.sql.api.r.SQLUtils failed Error in

Spark 2.0.0: SparkR CSV Import

依然范特西╮ 提交于 2021-01-27 06:48:37
问题 I am trying to read a csv file into SparkR (running Spark 2.0.0) - & trying to experiment with the newly added features. Using RStudio here. I am getting an error while "reading" the source file. My code: Sys.setenv(SPARK_HOME = "C:/spark-2.0.0-bin-hadoop2.6") library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"))) sparkR.session(master = "local[*]", appName = "SparkR") df <- loadDF("F:/file.csv", "csv", header = "true") I get an error at at the loadDF function. The

Spark 2.0.0: SparkR CSV Import

我是研究僧i 提交于 2021-01-27 06:46:43
问题 I am trying to read a csv file into SparkR (running Spark 2.0.0) - & trying to experiment with the newly added features. Using RStudio here. I am getting an error while "reading" the source file. My code: Sys.setenv(SPARK_HOME = "C:/spark-2.0.0-bin-hadoop2.6") library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"))) sparkR.session(master = "local[*]", appName = "SparkR") df <- loadDF("F:/file.csv", "csv", header = "true") I get an error at at the loadDF function. The

Spark 2.0.0: SparkR CSV Import

左心房为你撑大大i 提交于 2021-01-27 06:44:00
问题 I am trying to read a csv file into SparkR (running Spark 2.0.0) - & trying to experiment with the newly added features. Using RStudio here. I am getting an error while "reading" the source file. My code: Sys.setenv(SPARK_HOME = "C:/spark-2.0.0-bin-hadoop2.6") library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"))) sparkR.session(master = "local[*]", appName = "SparkR") df <- loadDF("F:/file.csv", "csv", header = "true") I get an error at at the loadDF function. The

大数据Spark生态圈,进击Spark生态圈必备,迈向“高薪”的基石

断了今生、忘了曾经 提交于 2020-10-02 08:24:21
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL、Spark Streaming、MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台。从各方面报道来看Spark抱负并非池鱼,而是希望替代Hadoop在大数据中的地位,成为大数据处理的主流标准,不过Spark还没有太多大项目的检验,离这个目标还有很大路要走。 Spark使用Scala语言进行实现,它是一种面向对象、函数式编程语言,能够像操作本地集合对象一样轻松地操作分布式数据集(Scala 提供一个称为 Actor 的并行模型,其中Actor通过它的收件箱来发送和接收非同步信息而不是共享数据,该方式被称为:Shared Nothing 模型)。在Spark官网上介绍,它具有运行速度快、易用性好、通用性强和随处运行等特点。 l运行速度快 Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算。官方提供的数据表明,如果数据由磁盘读取

Spark 3.0.0正式版发布,开发近两年新增了哪些特性?

喜夏-厌秋 提交于 2020-08-15 07:34:37
原计划在2019年年底发布的 Apache Spark 3.0.0 赶在下周二举办的 Spark Summit AI 会议之前正式发布了! Apache Spark 3.0.0 自2018年10月02日开发到目前已经经历了近21个月! 这个版本的发布经历了两个预览版以及三次投票: 2019年11月06日第一次预览版,参见Preview release of Spark 3.0; 2019年12月23日第二次预览版,参见Preview release of Spark 3.0; 2020年03月21日 [VOTE] Apache Spark 3.0.0 RC1; 2020年05月18日 [VOTE] Apache Spark 3.0 RC2; 2020年06月06日 [vote] Apache Spark 3.0 RC3。 Apache Spark 3.0 增加了很多令人兴奋的新特性,包括: 动态分区修剪(Dynamic Partition Pruning); 自适应查询执行(Adaptive Query Execution); 加速器感知调度(Accelerator-aware Scheduling); 支持 Catalog 的数据源API(Data Source API with Catalog Supports); SparkR 中的向量化(Vectorization in