问题
I load my CSV using DataFrame then I converted to DataSet but it's shows like this
Multiple markers at this line:
- Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing
spark.implicits._ Support for serializing other types will be added in future releases.
- not enough arguments for method as: (implicit evidence$2:
org.apache.spark.sql.Encoder[DataSet.spark.aacsv])org.apache.spark.sql.Dataset[DataSet.spark.aacsv]. Unspecified value parameter evidence$2
How to resolve this?. My code is -
case class aaCSV(
a: String,
b: String
)
object WorkShop {
def main(args: Array[String]) = {
val conf = new SparkConf()
.setAppName("readCSV")
.setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val customSchema = StructType(Array(
StructField("a", StringType, true),
StructField("b", StringType, true)))
val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").schema(customSchema).load("/xx/vv/ss.csv")
df.printSchema()
df.show()
val googleDS = df.as[aaCSV]
googleDS.show()
}
}
Now I changed main function like this -
def main(args: Array[String]) = {
val conf = new SparkConf()
.setAppName("readCSV")
.setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._;
val sa = sqlContext.read.csv("/xx/vv/ss.csv").as[aaCSV]
sa.printSchema()
sa.show()
}
But it throws error - Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot resolve 'Adj_Close
' given input columns: [_c1, _c2, _c5, _c4, _c6, _c3, _c0]; line 1 pos 7. What should i do ?
Now I execute my method using based on given time interval using spark scheduler. But I refer this link - https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-an-application. Kindly help us.
回答1:
Do you have header (column names) in your csv files ? If yes, try adding
.option("header","true")
in the read statement.
Example:
sqlContext.read.option("header","true").csv("/xx/vv/ss.csv").as[aaCSV]
.
The below blog has different examples for Dataframes and Dataset:http://technippet.blogspot.in/2016/10/different-ways-of-creating.html
回答2:
Try adding the below import, before you convert DF
to DS
.
sc.implicits._
OR
sqlContext.implicits._
For more info on working with DataSet https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-datasets
来源:https://stackoverflow.com/questions/40080045/how-to-work-with-dataset-in-spark-using-scala