问题
Here is the link to the problem:
http://www.spoj.com/problems/GCD/
Consider the decimal representation of a natural number N. Find the greatest common divisor (GCD) of all numbers that can be obtained by permuting the digits in the given number. Leading zeroes are allowed.
I worked on the following approach : https://math.stackexchange.com/a/22453
First, if all the digits are the same, there is only one number and that is the GCD. As was pointed out before, if 3 or 9 is a factor of one permutation it will be a factor of them all. Otherwise, imagine swapping just the ones and tens digit when they are different. The GCD of these two has to divide 100a+10b+c−100a+10c+b=9(b−c) where b and c are single digits. For the GCD of all the numbers to have a factor 2, all the digits must be even. For the GCD to have a factor 4, all the digits must be 0, 4, or 8 and for 8 they must be 0 or 8. Similarly for 5 and 7. Finally, the GCD will be 27 if all the digits are 0,3,6, or 9 and 27 divides one permutation and 81 if all the digits are 0 or 9 and 81 divides one permutation. Can you prove the last assertion?
My solution: http://ideone.com/VMUb6w
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<string>
using namespace std;
int rem(string str, int a){
if (str.empty())
{
return 0;
}
int temp = (str[str.length() - 1] - '0') % a;
int temp2 = 10 % a;
str.erase(str.length() - 1);
int temp3 = (rem(str, a)*temp2) % a;
return (temp3 + temp) % a;
}
int gcdf(int a, int b)
{
return b ? gcdf(b, a%b) : a;
}
int main(){
string str;
while (cin >> str)
{
size_t l = str.length();
vector<int> digit;
int sum = 0;
int frequency[9];
for (int i = 0; i<9; i++)
frequency[i] = 0;
int zero_sum = 0;
for (size_t i = 0; i < l; i++)
{
if (str.at(i) != '0')
{
frequency[str.at(i) - '1']++;
sum += str.at(i) - '0';
}
else
{
zero_sum++;
}
}
for (size_t i = 0; i < 9; i++)
{
if (frequency[i])
{
digit.push_back(i + 1);
}
}
int gcds = 0, gcd = 1;
for (size_t i = 0; i < digit.size(); i++)
{
gcds = gcdf(digit[i], gcds);
}
if (gcdf(3, gcds) == 1)
{
gcd *= gcds;
}
if (gcds == 6)
{
gcd *= 2;
}
if ((rem(str, 81) == 0) && (gcdf(gcds, 3) == 3))
{
gcd *= 81;
}
else
{
if ((rem(str, 27) == 0) && (gcdf(gcds, 3) == 3))
{
gcd *= 27;
}
else
{
if (sum % 9 == 0)
{
gcd *= 9;
}
else
{
if (sum % 3 == 0)
{
gcd *= 3;
}
}
}
}
if((digit.size()==1)&&(zero_sum==0))
cout<<str;
else
cout << gcd << endl;
}
return 0;
}
But it is giving WA. I cannot seem to find any edge case on where it might be wrong.
Please tell me where am i wrong. Thanks :)
回答1:
First, if all the digits are the same, there is only one number and that is the GCD.
You don't handle this (first) case
So with your code all of 11
, 111
, 44
gives wrong answer.
[..] 81 if all the digits are 0 or 9 and 81 divides one permutation.
It seems that your test is wrong for that:
if ((rem(str, 81) == 0) && (gcdf(gcds, 3) == 3))
Did you mean:
if ((rem(str, 81) == 0) && (gcdf(gcds, 9) == 9))
And so
You have for permutation of 3699 inconsistent results:
27 for 3699, 3996, 6939, 6993, 9369, 9693, 9936
81 for 3969, 6399, 9396, 9639, 9963.
My implementation to check (for int number) is:
int my_gcd(std::string str)
{
std::sort(str.begin(), str.end());
std::string first = str;
int gcd = atoi(first.c_str());
while (std::next_permutation(str.begin(), str.end())) {
gcd = gcdf(atoi(str.c_str()), gcd);
}
return gcd;
}
来源:https://stackoverflow.com/questions/25698691/finding-gcd-of-permutations-of-a-number