问题
I have array:
arr = np.array([1,2,3,2,3,4,3,2,1,2,3,1,2,3,2,2,3,4,2,1])
print (arr)
[1 2 3 2 3 4 3 2 1 2 3 1 2 3 2 2 3 4 2 1]
I would like find this pattern and return booelan mask:
pat = [1,2,3]
N = len(pat)
I use strides
:
#https://stackoverflow.com/q/7100242/2901002
def rolling_window(a, window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
c = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
return c
print (rolling_window(arr, N))
[[1 2 3]
[2 3 2]
[3 2 3]
[2 3 4]
[3 4 3]
[4 3 2]
[3 2 1]
[2 1 2]
[1 2 3]
[2 3 1]
[3 1 2]
[1 2 3]
[2 3 2]
[3 2 2]
[2 2 3]
[2 3 4]
[3 4 2]
[4 2 1]]
I find positions of first values only:
b = np.all(rolling_window(arr, N) == pat, axis=1)
c = np.mgrid[0:len(b)][b]
print (c)
[ 0 8 11]
And positions another vals:
d = [i for x in c for i in range(x, x+N)]
print (d)
[0, 1, 2, 8, 9, 10, 11, 12, 13]
Last return mask by in1d
:
e = np.in1d(np.arange(len(arr)), d)
print (e)
[ True True True False False False False False True True
True True True True False False False False False False]
Verify mask:
print (np.vstack((arr, e)))
[[1 2 3 2 3 4 3 2 1 2 3 1 2 3 2 2 3 4 2 1]
[1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0]]
1 2 3 1 2 3 1 2 3
I think my solution is a bit over-complicated. Is there some better, more pythonic solution?
回答1:
We can simplify things at the end with Scipy supported binary-dilation -
from scipy.ndimage.morphology import binary_dilation
m = (rolling_window(arr, len(pat)) == pat).all(1)
m_ext = np.r_[m,np.zeros(len(arr) - len(m), dtype=bool)]
out = binary_dilation(m_ext, structure=[1]*N, origin=-(N//2))
For performance, we can bring in OpenCV with its template matching capability, as we are basically doing the same here, like so -
import cv2
tol = 1e-5
pat_arr = np.asarray(pat, dtype='uint8')
m = (cv2.matchTemplate(arr.astype('uint8'),pat_arr,cv2.TM_SQDIFF) < tol).ravel()
回答2:
Not sure how safe this is, but another method would be to read back to an as_strided
view of the boolean output. As long as you only have one pat
at a time it shouldn't be a problem I think, and it may work with more but I can't gurantee it because reading back to as_strided
can be a bit unpredictable:
def vview(a): #based on @jaime's answer: https://stackoverflow.com/a/16973510/4427777
return np.ascontiguousarray(a).view(np.dtype((np.void, a.dtype.itemsize * a.shape[1])))
def roll_mask(arr, pat):
pat = np.atleast_2d(pat)
out = np.zeros_like(arr).astype(bool)
vout = rolling_window(out, pat.shape[-1])
vout[np.in1d(vview(rolling_window(arr, pat.shape[-1])), vview(pat))] = True
return out
np.where(roll_mask(arr, pat))
(array([ 0, 1, 2, 8, 9, 10, 11, 12, 13], dtype=int32),)
pat = np.array([[1, 2, 3], [3, 2, 3]])
print([i for i in arr[roll_mask(arr, pat)]])
[1, 2, 3, 2, 3, 1, 2, 3, 1, 2, 3]
It seems to work, but I wouldn't give this answer to a beginner!
来源:https://stackoverflow.com/questions/48988038/find-boolean-mask-by-pattern