问题
The following nls
code throws the following error Convergence failure: singular convergence (7)
for fm2
(for Data2
). But the same code for similar dataset works fine (fm1
for Data1
). Any help to figure out this problem will be highly appreciate. Thanks
Works Fine for this Data Set
Data1 <-
structure(list(D = c(0L, 0L, 0L, 0L, 5L, 5L, 5L, 5L,
10L, 10L, 10L, 10L, 15L, 15L, 15L, 15L, 20L, 20L, 20L, 20L),
Y = c(11.6, 9.3, 10.7, 9.2, 7.8, 8, 8.6, 7.9, 7.7,
7.6, 7.5, 7.5, 7.2, 7.3, 7, 6.5, 6.3, 5.7, 5.6, 6)), .Names = c("D",
"Y"), class = "data.frame", row.names = c(NA, 20L))
fm1 <-
nls(
formula=Y~w*(1-(i*D/(100*(1+i*D/A))))
, data=Data1
, start=list(w=13, i=3, A=80)
, algorithm="port"
)
Does not Work for this Data Set
Data2 <-
structure(list(D = c(0L, 0L, 0L, 0L, 5L, 5L, 5L, 5L,
10L, 10L, 10L, 10L, 15L, 15L, 15L, 15L, 20L, 20L, 20L, 20L),
Y = c(10.8, 10.7, 8.4, 8.5, 8, 8, 8, 7.9, 7.9, 7.2,
7.8, 7.2, 6.6, 6.5, 6.5, 6.4, 2.2, 4.5, 4.2, 6.2)), .Names = c("D",
"Y"), class = "data.frame", row.names = 21:40)
fm2 <-
nls(
formula=Y~w*(1-(i*D/(100*(1+i*D/A))))
, data=Data2
, start=list(w=13, i=3, A=80)
, algorithm="port"
)
回答1:
I think its having problems with your parameterization. We can take advantage of linearlity by letting B be i/A, .lin1 = w and .lin2 = i*w in which case .lin1 and .lin2 enter linearly and using alg=plinear
only the non-linear parameter needs a starting value:
> fo <- Y ~ cbind(1, -D/(100*(1+B*D)))
> nls(fo, Data, start = list(B = 3/80), alg = "plinear")
Nonlinear regression model
model: Y ~ cbind(1, -D/(100 * (1 + B * D)))
data: Data
B .lin1 .lin2
-0.02217 9.26808 13.61471
residual sum-of-squares: 15.76
Number of iterations to convergence: 9
Achieved convergence tolerance: 4.236e-06
From the result w = .lin1; i*w = .lin2 (so i = .lin2 / .lin1) and B = i/A (so A = i/B).
REVISED Improved the formulation.
来源:https://stackoverflow.com/questions/22229352/nls-convergence-failure-singular-convergence-7