How to get element-wise matrix multiplication (Hadamard product) in numpy?

会有一股神秘感。 提交于 2019-11-27 07:43:42
Rahul K P

For elementwise multiplication of matrix objects, you can use numpy.multiply:

import numpy as np
a = np.array([[1,2],[3,4]])
b = np.array([[5,6],[7,8]])
np.multiply(a,b)

Result

array([[ 5, 12],
       [21, 32]])

However, you should really use array instead of matrix. matrix objects have all sorts of horrible incompatibilities with regular ndarrays. With ndarrays, you can just use * for elementwise multiplication:

a * b

If you're on Python 3.5+, you don't even lose the ability to perform matrix multiplication with an operator, because @ does matrix multiplication now:

a @ b  # matrix multiplication

just do this:

import numpy as np

a = np.array([[1,2],[3,4]])
b = np.array([[5,6],[7,8]])

a * b
4rshdeep
import numpy as np
x = np.array([[1,2,3], [4,5,6]])
y = np.array([[-1, 2, 0], [-2, 5, 1]])

x*y
Out: 
array([[-1,  4,  0],
       [-8, 25,  6]])

%timeit x*y
1000000 loops, best of 3: 421 ns per loop

np.multiply(x,y)
Out: 
array([[-1,  4,  0],
       [-8, 25,  6]])

%timeit np.multiply(x, y)
1000000 loops, best of 3: 457 ns per loop

Both np.multiply and * would yield element wise multiplication known as the Hadamard Product

%timeit is ipython magic

Try this:

a = np.matrix([[1,2], [3,4]])
b = np.matrix([[5,6], [7,8]])

#This would result a 'numpy.ndarray'
result = np.array(a) * np.array(b)

Here, np.array(a) returns a 2D array of type ndarray and multiplication of two ndarray would result element wise multiplication. So the result would be:

result = [[5, 12], [21, 32]]

If you wanna get a matrix, the do it with this:

result = np.mat(result)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!