问题
I am very new to mongodb/pymongo. I have successfully imported my data into mongo and would like to use the group function to group similar row together. For example, if my data set looks like this:
data = [{uid: 1 , event: 'a' , time: 1} ,
{uid: 1 , event: 'b' , time: 2} ,
{uid: 2 , event: 'c' , time: 2} ,
{uid: 3 , event: 'd' , time: 4}
]
How do I use the group function to group the above rows according to the uid field such that the output is as follows?
{ {uid: 1} : [{uid: 1 , event: 'a' , time: 1} , {uid: 1 , event: 'b' , time: 2} ],
{uid: 2} : [{uid: 2 , event: 'c' , time: 2} ],
{uid: 3} : [{uid: 3 , event: 'd' , time: 4} ] }
I read through the examples at http://www.mongodb.org/display/DOCS/Aggregation. However, it seems to me that those example always aggregate into a single number or object.
Thanks,
回答1:
You needn't use the reduce
function to actually reduce anything. For example:
>>> coll.insert(dict(uid=1,event='a',time=1))
ObjectId('4d5b91d558839f06a8000000')
>>> coll.insert(dict(uid=1,event='b',time=2))
ObjectId('4d5b91e558839f06a8000001')
>>> coll.insert(dict(uid=2,event='c',time=2))
ObjectId('4d5b91f358839f06a8000002')
>>> coll.insert(dict(uid=3,event='d',time=4))
ObjectId('4d5b91fd58839f06a8000003')
>>> result = coll.group(['uid'], None,
{'list': []}, # initial
'function(obj, prev) {prev.list.push(obj)}') # reducer
>>> len(result) # will show three groups
3
>>> int(result[0]['uid'])
1
>>> result[0]['list']
[{u'event': u'a', u'_id': ObjectId('4d5b...0000'), u'uid': 1, u'time': 1},
{u'event': u'b', u'_id': ObjectId('4d5b...0001'), u'uid': 1, u'time': 2}]
>>> int(result[1]['uid'])
2
>>> result[1]['list']
[{u'event': u'c', u'_id': ObjectId('4d5b...0002'), u'uid': 2, u'time': 2}]
>>> int(result[2]['uid'])
3
>>> result[2]['list']
[{u'event': u'd', u'_id': ObjectId('4d5b...0003'), u'uid': 3, u'time': 4}]
I've shortened the object IDs in the above listing to improve readability.
来源:https://stackoverflow.com/questions/5010624/how-to-use-group-in-pymongo-to-group-similar-rows