Overlay multiple data with 2D density using different colours onto ggmap

北城以北 提交于 2019-12-22 01:40:20

问题


I feel like I've been endlessly searching for a solution to this and cannot find one anywhere. Basically, I need to overlay coloured contour maps as different layers (with different colours) onto a ggmap and cannot get this to work for my life. What I'm trying to do is take the example illustrated here: Overlay two ggplot2 stat_density2d plots with alpha channels only instead of mapping this onto a ggplot(), map it onto a ggmap(). I've read here: ggmap with geom_map superimposed that part of the difficulty in this is nullifying the implicit aesthetics sent from ggmap to ggplot, but I always encounter a whole series of errors regardless of what I do. Some of the errors I've encountered come from not recognizing 'group'. Use of geom_contour gives the following error when using the same format as below (z=X3):

 Error in contourLines(x = sort(unique(data$x)), y = sort(unique(data$y)),  : 
 no proper 'z' matrix specified 

Part of the difficulty has also been with assigning different colours to the variables. Binding the columns (as done below and in the example linked above) and distinguishing variable a form variable B in column X3 by having an "a" or a "b" in the fourth column 'groups' does not seem to register that well with the scale_color_manual(). Ultimately, I'm trying to find a way of assigning a different color to each column of a data.frame - any thoughts on that would also be helpful.

I've included an example dataset and one of my approaches + errors - any help with this at all would be greatly appreciated (thank you in advance for your time/consideration)! Please let me know if there's anything else I can do to assist!

library(ggplot2)
library(ggmap)

#location defined by lon/lat coordinates
location <- c(-74.03990, 40.52726, -73.68864,  40.81141)
   map <- get_map(location = location, scale="auto", zoom=11)
   map2 <- ggmap(map)
   map2 + stat_density2d(data=d, geom="density2d", aes(x=d[,1],y=d[,2], z=d[,3], color = group,alpha=..level..),size=2, contour=TRUE) + 
   scale_color_manual(values=c("a"="#FF0000", "b"="#00FF00"))

#Following error received: Error in if (any(h <= 0)) stop("bandwidths must be strictly positive") : 
 missing value where TRUE/FALSE needed  

#Dataset (d): 

d = read.table(header=TRUE, text="
X1  X2  X3  group
40.7462     -73.71148   2291    a
40.7566     -73.71418   291 a
40.74715    -73.93975   54579   a
40.77288    -73.9263    4564    a
40.76257    -73.91345   7189    a
40.74463    -73.9202    3643    a
40.77888    -73.90677   8108    a
40.76221    -73.93153   7420    a
40.74512    -73.95693   9   a
NA  NA  0   a
40.78075-73.8253    9   a
NA  NA  138 a
40.76821    -73.8274    17733   a
40.75145    -73.82103   13321   a
40.78485    -73.84128   7769    a
40.78639    -73.81086   5970    a
40.76047    -73.79637   4045    a
40.79178    -73.77688   0   a
40.78038    -73.78123   2548    a
40.76419    -73.77277   6351    a
40.75657    -73.73784   4000    a
40.77262    -73.74653   1262    a
40.74529    -73.76059   2251    a
40.73963    -73.79449   4730    a
40.72815    -73.78502   2660    a
40.73014    -73.82703   3639    a
40.75172    -73.85182   8450    a
40.76336    -73.87237   3245    a
40.76539    -73.89324   3207    a
40.77389    -73.87348   11932   a
40.75169    -73.88364   6080    a
40.73884    -73.87853   14148   a
40.72642    -73.86153   7352    a
40.72093    -73.84615   15755   a
40.74482    -73.90516   13699   a
40.72474    -73.90964   19479   a
40.71675    -73.8796    3975    a
NA  NA  11  a
40.70067    -73.88943   17790   a
NA  NA  18  a
40.69402    -73.73622   790 a
40.6981 -73.75899   1104    a
40.67166    -73.75257   4920    a
40.6576 -73.8448    2669    a
40.70792    -73.82821   3400    a
40.68465    -73.84955   3935    a
40.67645    -73.84444   3896    a
40.70027    -73.83597   7791    a
40.68867    -73.82292   2492    a
40.67358    -73.81773   2555    a
40.69406    -73.85863   2568    a
40.66006    -73.73601   2136    a
40.71561    -73.76847   2545    a
40.7143 -73.82726   29  a
40.60775    -74.02394   0   a
40.73642    -73.72238   2336    a
40.7309 -73.74566   2788    a
40.72102    -73.74224   3074    a
40.70977    -73.73865   1396    a
40.64696    -73.78481   36136   a
NA  NA  433 a
40.71536    -73.79307   20480   a
40.69816    -73.78689   4812    a
40.67681    -73.77643   10111   a
40.70126    -73.8096    5259    a
40.67581    -73.79662   734 a
NA  NA  0   a
40.70128    -73.79597   38  a
NA  NA  0   a
40.60128    -73.76165   8987    a
40.59409    -73.7929    1512    a
40.59069    -73.80975   785 a
40.57827    -73.84476   2206    a
NA  NA  6   a
40.55569    -73.92066   246 a
40.7462 -73.71148   2662    a
40.7566 -73.71418   323 a
40.74715    -73.93975   57472   a
40.77288    -73.9263    6104    a
40.76257    -73.91345   10050   a
40.74463    -73.9202    5435    a
40.77888    -73.90677   8813    a
40.76221    -73.93153   9495    a
40.74512    -73.95693   104 a
NA  NA  987 a
40.78075    -73.8253    0   a
NA  NA  0   a
40.76821    -73.8274    22132   a
40.75145    -73.82103   15447   a
40.78485    -73.84128   7983    a
40.78639    -73.81086   9541    a
40.76047    -73.79637   5136    a
40.79178    -73.77688   232 a
40.78038    -73.78123   3259    a
40.76419    -73.77277   11225   a
40.75657    -73.73784   4118    a
40.77262    -73.74653   876 a
40.74529    -73.76059   2696    a
40.73963    -73.79449   7173    a
40.72815    -73.78502   2535    a
40.73014    -73.82703   4119    a
40.75172    -73.85182   10069   a
40.76336    -73.87237   3903    a
40.76539    -73.89324   3207    a
40.77389    -73.87348   8263    a
40.75169    -73.88364   7676    a
40.73884    -73.87853   16452   a
40.72642    -73.86153   10525   a
40.72093    -73.84615   19521   a
40.74482    -73.90516   15876   a
40.72474    -73.90964   18002   a
40.71675    -73.8796    4187    a
NA  NA  0   a
40.70067    -73.88943   13158   a
NA  NA  0   a
NA  NA  0   a
40.69402    -73.73622   1125    a
40.6981 -73.75899   1373    a
40.67166    -73.75257   4921    a
40.6576 -73.8448    3272    a
40.70792    -73.82821   3864    a
40.68465    -73.84955   6213    a
40.67645    -73.84444   3237    a
40.70027    -73.83597   10273   a
40.68867    -73.82292   3022    a
40.67358    -73.81773   2119    a
40.69406    -73.85863   2348    a
40.66006    -73.73601   2399    a
40.71561    -73.76847   2698    a
40.7143 -73.82726   0   a
40.60775    -74.02394   6   a
40.73642    -73.72238   1644    a
40.7309 -73.74566   2662    a
40.72102    -73.74224   1840    a
40.70977    -73.73865   2159    a
40.64696    -73.78481   32803   a
NA  NA  0   a
40.71536    -73.79307   17141   a
40.69816    -73.78689   4413    a
40.67681    -73.77643   10162   a
40.70126    -73.8096    6113    a
40.67581    -73.79662   1150    a
NA  NA  0   a
40.70128    -73.79597   0   a
NA  NA  0   a
40.60128    -73.76165   9230    a
40.59409    -73.7929    1516    a
40.59069    -73.80975   1365    a
40.57827    -73.84476   2477    a
NA  NA  0   a
40.55569    -73.92066   0   a
40.65856    -73.83793   485674  a
40.65856    -73.83793   474309  a
40.65856    -73.83793   490781  a
40.65856    -73.83793   485415  a
40.7462 -73.71148   15104   b
40.7566 -73.71418   2127    b
40.74715    -73.93975   425461  b
40.77288    -73.9263    28530   b
40.76257    -73.91345   31037   b
40.74463    -73.9202    17761   b
40.77888    -73.90677   71613   b
40.76221    -73.93153   49392   b
40.74512    -73.95693   26  b
NA  NA  0   b
40.78075    -73.8253    22  b
NA  NA  422 b
40.76821    -73.8274    129835  b
40.75145    -73.82103   102112  b
40.78485    -73.84128   58960   b
40.78639    -73.81086   44983   b
40.76047    -73.79637   21056   b
40.79178    -73.77688   0   b
40.78038    -73.78123   13793   b
40.76419    -73.77277   35714   b
40.75657    -73.73784   27032   b
40.77262    -73.74653   7736    b
40.74529    -73.76059   10625   b
40.73963    -73.79449   30687   b
40.72815    -73.78502   16195   b
40.73014    -73.82703   15304   b
40.75172    -73.85182   59640   b
40.76336    -73.87237   17290   b
40.76539    -73.89324   26305   b
40.77389    -73.87348   134868  b
40.75169    -73.88364   30477   b
40.73884    -73.87853   97516   b
40.72642    -73.86153   43091   b
40.72093    -73.84615   104323  b
40.74482    -73.90516   87453   b
40.72474    -73.90964   148989  b
40.71675    -73.8796    20918   b
NA  NA  31  b
40.70067    -73.88943   106211  b
NA  NA  75  b
40.69402    -73.73622   3544    b
40.6981 -73.75899   4854    b
40.67166    -73.75257   32455   b
40.6576 -73.8448    11468   b
40.70792    -73.82821   19029   b
40.68465    -73.84955   20529   b
40.67645    -73.84444   19449   b
40.70027    -73.83597   59519   b
40.68867    -73.82292   11405   b
40.67358    -73.81773   10186   b
40.69406    -73.85863   12451   b
40.66006    -73.73601   11736   b
40.71561    -73.76847   15923   b
40.7143 -73.82726   178 b
40.60775    -74.02394   0   b
40.73642    -73.72238   13449   b
40.7309 -73.74566   22605   b
40.72102    -73.74224   12583   b
40.70977    -73.73865   7087    b
40.64696    -73.78481   293941  b
NA  NA  1996    b
40.71536    -73.79307   134835  b
40.69816    -73.78689   35158   b
40.67681    -73.77643   71514   b
40.70126    -73.8096    31573   b
40.67581    -73.79662   2807    b
NA  NA  0   b
40.70128    -73.79597   146 b
NA  NA  0   b
40.60128    -73.76165   64099   b
40.59409    -73.7929    10962   b
40.59069    -73.80975   4070    b
40.57827    -73.84476   12337   b
NA  NA  59  b
40.55569    -73.92066   1289    b
40.7462 -73.71148   27391   b
40.7566 -73.71418   3325    b
40.74715    -73.93975   787094  b
40.77288    -73.9263    56684   b
40.76257    -73.91345   77633   b
40.74463    -73.9202    53017   b
40.77888    -73.90677   119137  b
40.76221    -73.93153   81405   b
40.74512    -73.95693   853 b
NA  NA  36030   b
40.78075    -73.8253    0   b
NA  NA  0   b
40.76821    -73.8274    217776  b
40.75145    -73.82103   168220  b
40.78485    -73.84128   88312   b
40.78639    -73.81086   158064  b
40.76047    -73.79637   37400   b
40.79178    -73.77688   1694    b
40.78038    -73.78123   22329   b
40.76419    -73.77277   74178   b
40.75657    -73.73784   34693   b
40.77262    -73.74653   9633    b
40.74529    -73.76059   16537   b
40.73963    -73.79449   74371   b
40.72815    -73.78502   19425   b
40.73014    -73.82703   25734   b
40.75172    -73.85182   80863   b
40.76336    -73.87237   38098   b
40.76539    -73.89324   39765   b
40.77389    -73.87348   107770  b
40.75169    -73.88364   53202   b
40.73884    -73.87853   134436  b
40.72642    -73.86153   87298   b
40.72093    -73.84615   182240  b
40.74482    -73.90516   143954  b
40.72474    -73.90964   176588  b
40.71675    -73.8796    32620   b
NA  NA  0   b
40.70067    -73.88943   110389  b
NA  NA  0   b
NA  NA  0   b
40.69402    -73.73622   7605    b
40.6981 -73.75899   7828    b
40.67166    -73.75257   43516   b
40.6576 -73.8448    19379   b
40.70792    -73.82821   27776   b
40.68465    -73.84955   62659   b
40.67645    -73.84444   23544   b
40.70027    -73.83597   111172  b
40.68867    -73.82292   18630   b
40.67358    -73.81773   13640   b
40.69406    -73.85863   14492   b
40.66006    -73.73601   18271   b
40.71561    -73.76847   22171   b
40.7143 -73.82726   0   b
40.60775    -74.02394   45  b
40.73642    -73.72238   12110   b
40.7309 -73.74566   29922   b
40.72102    -73.74224   13098   b
40.70977    -73.73865   17941   b
40.64696    -73.78481   348916  b
NA  NA  282 b
40.71536    -73.79307   134967  b
40.69816    -73.78689   49745   b
40.67681    -73.77643   93472   b
40.70126    -73.8096    53065   b
40.67581    -73.79662   7434    b
NA  NA  0   b
40.70128    -73.79597   0   b
NA  NA  1480    b
40.60128    -73.76165   78882   b
40.59409    -73.7929    14203   b
40.59069    -73.80975   10872   b
40.57827    -73.84476   18295   b
NA  NA  0   b
40.55569    -73.92066   0   b
40.7462 -73.71148   66084   c
40.7566 -73.71418   8573    c
40.74715    -73.93975   1843805 c
40.77288    -73.9263    133615  c
40.76257    -73.91345   137850  c
40.74463    -73.9202    81181   c
40.77888    -73.90677   302313  c
40.76221    -73.93153   220023  c
40.74512    -73.95693   301 c
NA  NA  0   c
40.78075    -73.8253    92  c
NA  NA  1971    c
40.76821    -73.8274    544653  c
40.75145    -73.82103   419811  c
40.78485    -73.84128   259427  c
40.78639    -73.81086   193106  c
40.76047    -73.79637   93157   c
40.79178    -73.77688   0   c
40.78038    -73.78123   60286   c
40.76419    -73.77277   156160  c
40.75657    -73.73784   111577  c
40.77262    -73.74653   31104   c
40.74529    -73.76059   47317   c
40.73963    -73.79449   130814  c
40.72815    -73.78502   67950   c
40.73014    -73.82703   69978   c
40.75172    -73.85182   282942  c
40.76336    -73.87237   77372   c
40.76539    -73.89324   109186  c
40.77389    -73.87348   517378  c
40.75169    -73.88364   134269  c
40.73884    -73.87853   406084  c
40.72642    -73.86153   182311  c
40.72093    -73.84615   438112  c
40.74482    -73.90516   394896  c
40.72474    -73.90964   629891  c
40.71675    -73.8796    92917   c
NA  NA  124 c
40.70067    -73.88943   460613  c
NA  NA  538 c
40.69402    -73.73622   15340   c
40.6981 -73.75899   20866   c
40.67166    -73.75257   136822  c
40.6576 -73.8448    49428   c
40.70792    -73.82821   80721   c
40.68465    -73.84955   88995   c
40.67645    -73.84444   85021   c
40.70027    -73.83597   261390  c
40.68867    -73.82292   53724   c
40.67358    -73.81773   41492   c
40.69406    -73.85863   49921   c
40.66006    -73.73601   51425   c
40.71561    -73.76847   70338   c
40.7143 -73.82726   818 c
40.60775    -74.02394   0   c
40.73642    -73.72238   53722   c
40.7309 -73.74566   91395   c
40.72102    -73.74224   44871   c
40.70977    -73.73865   31075   c
40.64696    -73.78481   1221994 c
NA  NA  7483    c
40.71536    -73.79307   556231  c
40.69816    -73.78689   152664  c
40.67681    -73.77643   302567  c
40.70126    -73.8096    133303  c
40.67581    -73.79662   12025   c
NA  NA  0   c
40.70128    -73.79597   632 c
NA  NA  0   c
40.60128    -73.76165   268753  c
40.59409    -73.7929    51702   c
40.59069    -73.80975   19536   c
40.57827    -73.84476   55319   c
NA  NA  441 c
40.55569    -73.92066   6625    c
40.7462 -73.71148   112122  c
40.7566 -73.71418   13378   c
40.74715    -73.93975   3241581 c
40.77288    -73.9263    261306  c
40.76257    -73.91345   345772  c
40.74463    -73.9202    197763  c
40.77888    -73.90677   493083  c
40.76221    -73.93153   349103  c
40.74512    -73.95693   4638    c
NA  NA  105752  c
40.78075    -73.8253    0   c
NA  NA  0   c
40.76821    -73.8274    917321  c
40.75145    -73.82103   744570  c
40.78485    -73.84128   393565  c
40.78639    -73.81086   636438  c
40.76047    -73.79637   167972  c
40.79178    -73.77688   7060    c
40.78038    -73.78123   104627  c
40.76419    -73.77277   336880  c
40.75657    -73.73784   152396  c
40.77262    -73.74653   41396   c
40.74529    -73.76059   75838   c
40.73963    -73.79449   313518  c
40.72815    -73.78502   85678   c
40.73014    -73.82703   120070  c
40.75172    -73.85182   514110  c
40.76336    -73.87237   173600  c
40.76539    -73.89324   164016  c
40.77389    -73.87348   427447  c
40.75169    -73.88364   232448  c
40.73884    -73.87853   592870  c
40.72642    -73.86153   360698  c
40.72093    -73.84615   766798  c
40.74482    -73.90516   638015  c
40.72474    -73.90964   800645  c
40.71675    -73.8796    141729  c
NA  NA  0   c
40.70067    -73.88943   482254  c
NA  NA  0   c
NA  NA  0   c
40.69402    -73.73622   33628   c
40.6981 -73.75899   36630   c
40.67166    -73.75257   190158  c
40.6576 -73.8448    85747   c
40.70792    -73.82821   121903  c
40.68465    -73.84955   272359  c
40.67645    -73.84444   86102   c
40.70027    -73.83597   490335  c
40.68867    -73.82292   83703   c
40.67358    -73.81773   62921   c
40.69406    -73.85863   65541   c
40.66006    -73.73601   83175   c
40.71561    -73.76847   96254   c
40.7143 -73.82726   1126    c
40.60775    -74.02394   185 c
40.73642    -73.72238   52068   c
40.7309 -73.74566   96879   c
40.72102    -73.74224   58815   c
40.70977    -73.73865   78567   c
40.64696    -73.78481   1454109 c
NA  NA  1223    c
40.71536    -73.79307   582318  c
40.69816    -73.78689   200462  c
40.67681    -73.77643   402264  c
40.70126    -73.8096    231929  c
40.67581    -73.79662   30674   c
NA  NA  0   c
40.70128    -73.79597   0   c
NA  NA  6474    c
40.60128    -73.76165   338663  c
40.59409    -73.7929    61092   c
40.59069    -73.80975   47794   c
40.57827    -73.84476   77847   c
NA  NA  0   c
40.55569    -73.92066   12386   c
40.65856    -73.83793   5476703540  c
40.65856    -73.83793   5342856179  c
40.65856    -73.83793   6195156100  c
40.65856    -73.83793   5515386851  c
40.7462 -73.71148   192 d
40.7566 -73.71418   32  d
40.74715    -73.93975   2496    d
40.77288    -73.9263    569 d
40.76257    -73.91345   932 d
40.74463    -73.9202    462 d
40.77888    -73.90677   743 d
40.76221    -73.93153   857 d
40.74512    -73.95693   3   d
NA  NA  28  d
40.78075    -73.8253    4   d
NA  NA  25  d
40.76821    -73.8274    1772    d
40.75145    -73.82103   1187    d
40.78485    -73.84128   499 d
40.78639    -73.81086   790 d
40.76047    -73.79637   824 d
40.79178    -73.77688   2   d
40.78038    -73.78123   345 d
40.76419    -73.77277   831 d
40.75657    -73.73784   364 d
40.77262    -73.74653   182 d
40.74529    -73.76059   458 d
40.73963    -73.79449   522 d
40.72815    -73.78502   372 d
40.73014    -73.82703   471 d
40.75172    -73.85182   927 d
40.76336    -73.87237   189 d
40.76539    -73.89324   222 d
40.77389    -73.87348   75  d
40.75169    -73.88364   1309    d
40.73884    -73.87853   1189    d
40.72642    -73.86153   833 d
40.72093    -73.84615   1926    d
40.74482    -73.90516   1367    d
40.72474    -73.90964   904 d
40.71675    -73.8796    428 d
NA  NA  4   d
40.70067    -73.88943   1426    d
NA  NA  6   d
40.69402    -73.73622   111 d
40.6981 -73.75899   174 d
40.67166    -73.75257   342 d
40.6576 -73.8448    435 d
40.70792    -73.82821   348 d
40.68465    -73.84955   337 d
40.67645    -73.84444   347 d
40.70027    -73.83597   549 d
40.68867    -73.82292   511 d
40.67358    -73.81773   248 d
40.69406    -73.85863   369 d
40.66006    -73.73601   265 d
40.71561    -73.76847   300 d
40.7143 -73.82726   6   d
40.60775    -74.02394   1   d
40.73642    -73.72238   198 d
40.7309 -73.74566   187 d
40.72102    -73.74224   228 d
40.70977    -73.73865   160 d
40.64696    -73.78481   314 d
NA  NA  25  d
40.71536    -73.79307   1092    d
40.69816    -73.78689   252 d
40.67681    -73.77643   817 d
40.70126    -73.8096    599 d
40.67581    -73.79662   51  d
NA  NA  8   d
40.70128    -73.79597   3   d
NA  NA  4   d
40.60128    -73.76165   399 d
40.59409    -73.7929    73  d
40.59069    -73.80975   83  d
40.57827    -73.84476   294 d
NA  NA  5   d
40.55569    -73.92066   38  d
40.7462 -73.71148   229 d
40.7566 -73.71418   34  d
40.74715    -73.93975   2744    d
40.77288    -73.9263    679 d
40.76257    -73.91345   1108    d
40.74463    -73.9202    538 d
40.77888    -73.90677   903 d
40.76221    -73.93153   1028    d
40.74512    -73.95693   34  d
NA  NA  33  d
40.78075    -73.8253    1   d
NA  NA  8   d
40.76821    -73.8274    2704    d
40.75145    -73.82103   1832    d
40.78485    -73.84128   702 d
40.78639    -73.81086   917 d
40.76047    -73.79637   1160    d
40.79178    -73.77688   11  d
40.78038    -73.78123   361 d
40.76419    -73.77277   1010    d
40.75657    -73.73784   442 d
40.77262    -73.74653   165 d
40.74529    -73.76059   584 d
40.73963    -73.79449   643 d
40.72815    -73.78502   449 d
40.73014    -73.82703   582 d
40.75172    -73.85182   1277    d
40.76336    -73.87237   280 d
40.76539    -73.89324   297 d
40.77389    -73.87348   95  d
40.75169    -73.88364   1629    d
40.73884    -73.87853   1498    d
40.72642    -73.86153   1089    d
40.72093    -73.84615   2060    d
40.74482    -73.90516   1492    d
40.72474    -73.90964   1101    d
40.71675    -73.8796    543 d
NA  NA  2   d
40.70067    -73.88943   1742    d
NA  NA  2   d
NA  NA  2   d
40.69402    -73.73622   140 d
40.6981 -73.75899   239 d
40.67166    -73.75257   433 d
40.6576 -73.8448    438 d
40.70792    -73.82821   419 d
40.68465    -73.84955   393 d
40.67645    -73.84444   391 d
40.70027    -73.83597   718 d
40.68867    -73.82292   682 d
40.67358    -73.81773   373 d
40.69406    -73.85863   443 d
40.66006    -73.73601   307 d
40.71561    -73.76847   359 d
40.7143 -73.82726   7   d
40.60775    -74.02394   3   d
40.73642    -73.72238   248 d
40.7309 -73.74566   237 d
40.72102    -73.74224   310 d
40.70977    -73.73865   222 d
40.64696    -73.78481   342 d
NA  NA  13  d
40.71536    -73.79307   1220    d
40.69816    -73.78689   298 d
40.67681    -73.77643   939 d
40.70126    -73.8096    823 d
40.67581    -73.79662   98  d
NA  NA  27  d
40.70128    -73.79597   3   d
NA  NA  9   d
40.60128    -73.76165   490 d
40.59409    -73.7929    90  d
40.59069    -73.80975   132 d
40.57827    -73.84476   330 d
NA  NA  2   d
40.55569    -73.92066   48  d")

回答1:


The primary problem seems to be solved by using the correct columns for x and y aesthetics:

p = map2 + 
    stat_density2d(aes(x=X2 ,y=X1, z=X3, color=group, alpha=..level..),
                   data=d, size=2, contour=TRUE)

ggsave("map.png", plot=p, height=7, width=7)



来源:https://stackoverflow.com/questions/25513336/overlay-multiple-data-with-2d-density-using-different-colours-onto-ggmap

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!