问题
I have
x=rnorm(100)
y=rnorm(100)
plot(x,y)
abline(h=0); abline(v=0)
From point (0,0)
and going outwards I would like to draw a contour/circle/ellipse/freehand convex hull that encloses any given percentage of points.
Is there any function or package that can automate this? I have tried the following so far but I can only get a circle with some extrapolation and approximation.
I have tried this so far:
#calculate radius
r<- sqrt(x^2+y^2)
df<-data.frame(radius=seq(0,3,0.1), percentage=NA)
#get the percentage of points that have a smaller radius than i
k<-1
for (i in seq(0,3,0.1)){
df$percentage[k] <- sum(r<i)/length(r)
k<-k+1
}
#extrapolation function
prox.function<- approxfun(df$percentage, df$radius)
#get the radius of the circle that encloses about 50% of
prox.function(.50)
#draw the circle
library(plotrix)
draw.circle(0,0,prox.function(.50))
回答1:
The radius enclosing a fraction f of the points is:
f <- 0.5 # use half for this example as in the question
sort(r)[ ceiling(f * length(r)) ]
回答2:
Yes, we can create a new geom for ggplot that will draw a convex hull around any given percentage of all the points in the data. This is similar to the bagplot, and uses some code from the bagplot function in the aplpack package (which is fixed at 50% of points).
Here is the definition of the new geom that allows you to chose what percentage of points to enclose:
library(ggplot2)
# Here's the stat_
StatBag <- ggproto("Statbag", Stat,
compute_group = function(data, scales, prop = 0.5) {
#################################
#################################
# originally from aplpack package, plotting functions removed
plothulls_ <- function(x, y, fraction, n.hull = 1,
col.hull, lty.hull, lwd.hull, density=0, ...){
# function for data peeling:
# x,y : data
# fraction.in.inner.hull : max percentage of points within the hull to be drawn
# n.hull : number of hulls to be plotted (if there is no fractiion argument)
# col.hull, lty.hull, lwd.hull : style of hull line
# plotting bits have been removed, BM 160321
# pw 130524
if(ncol(x) == 2){ y <- x[,2]; x <- x[,1] }
n <- length(x)
if(!missing(fraction)) { # find special hull
n.hull <- 1
if(missing(col.hull)) col.hull <- 1
if(missing(lty.hull)) lty.hull <- 1
if(missing(lwd.hull)) lwd.hull <- 1
x.old <- x; y.old <- y
idx <- chull(x,y); x.hull <- x[idx]; y.hull <- y[idx]
for( i in 1:(length(x)/3)){
x <- x[-idx]; y <- y[-idx]
if( (length(x)/n) < fraction ){
return(cbind(x.hull,y.hull))
}
idx <- chull(x,y); x.hull <- x[idx]; y.hull <- y[idx];
}
}
if(missing(col.hull)) col.hull <- 1:n.hull
if(length(col.hull)) col.hull <- rep(col.hull,n.hull)
if(missing(lty.hull)) lty.hull <- 1:n.hull
if(length(lty.hull)) lty.hull <- rep(lty.hull,n.hull)
if(missing(lwd.hull)) lwd.hull <- 1
if(length(lwd.hull)) lwd.hull <- rep(lwd.hull,n.hull)
result <- NULL
for( i in 1:n.hull){
idx <- chull(x,y); x.hull <- x[idx]; y.hull <- y[idx]
result <- c(result, list( cbind(x.hull,y.hull) ))
x <- x[-idx]; y <- y[-idx]
if(0 == length(x)) return(result)
}
result
} # end of definition of plothulls
#################################
# prepare data to go into function below
the_matrix <- matrix(data = c(data$x, data$y), ncol = 2)
# get data out of function as df with names
setNames(data.frame(plothulls_(the_matrix, fraction = prop)), nm = c("x", "y"))
# how can we get the hull and loop vertices passed on also?
},
required_aes = c("x", "y")
)
# Here's the stat_ function
#' @inheritParams ggplot2::stat_identity
#' @param prop Proportion of all the points to be included in the bag (default is 0.5)
stat_bag <- function(mapping = NULL, data = NULL, geom = "polygon",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, prop = 0.5, alpha = 0.3, ...) {
layer(
stat = StatBag, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, prop = prop, alpha = alpha, ...)
)
}
# here's the geom_
geom_bag <- function(mapping = NULL, data = NULL,
stat = "identity", position = "identity",
prop = 0.5,
alpha = 0.3,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = StatBag,
geom = GeomBag,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
na.rm = na.rm,
alpha = alpha,
prop = prop,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
GeomBag <- ggproto("GeomBag", Geom,
draw_group = function(data, panel_scales, coord) {
n <- nrow(data)
if (n == 1) return(zeroGrob())
munched <- coord_munch(coord, data, panel_scales)
# Sort by group to make sure that colors, fill, etc. come in same order
munched <- munched[order(munched$group), ]
# For gpar(), there is one entry per polygon (not one entry per point).
# We'll pull the first value from each group, and assume all these values
# are the same within each group.
first_idx <- !duplicated(munched$group)
first_rows <- munched[first_idx, ]
ggplot2:::ggname("geom_bag",
grid:::polygonGrob(munched$x, munched$y, default.units = "native",
id = munched$group,
gp = grid::gpar(
col = first_rows$colour,
fill = alpha(first_rows$fill, first_rows$alpha),
lwd = first_rows$size * .pt,
lty = first_rows$linetype
)
)
)
},
default_aes = aes(colour = "NA", fill = "grey20", size = 0.5, linetype = 1,
alpha = NA, prop = 0.5),
handle_na = function(data, params) {
data
},
required_aes = c("x", "y"),
draw_key = draw_key_polygon
)
Here are some examples. We can stack three convex hulls together with different alpha levels to show where the centre of the data is, and its spread:
ggplot(mpg, aes(displ, hwy, fill = drv, colour = drv)) +
geom_point() +
geom_bag(prop = 0.95) + # enclose 95% of points
geom_bag(prop = 0.5, alpha = 0.5) + # enclose 50% of points
geom_bag(prop = 0.1, alpha = 0.8) # enclose 5% of points
ggplot(iris, aes(Sepal.Length, Petal.Length, colour = Species, fill = Species)) +
geom_point() +
stat_bag(prop = 0.95) + # enclose 95% of points
stat_bag(prop = 0.5, alpha = 0.5) + # enclose 50% of points
stat_bag(prop = 0.05, alpha = 0.9) # enclose 5% of points
来源:https://stackoverflow.com/questions/30301108/plot-a-circle-convex-hull-arround-a-given-percentage-of-points