Iteratively forecasting dyn models

五迷三道 提交于 2019-12-21 03:10:11

问题


I've written a function to iteratively forecast models built using the package dyn, and I'd like some feedback on it. Is there a better way to do this? Has someone written canonical "forecast" methods for the dyn class (or dynlm class), or am I venturing into uncharted territory here?

ipredict <-function(model, newdata, interval = "none",
        level = 0.95, na.action = na.pass, weights = 1) {
 P<-predict(model,newdata=newdata,interval=interval,
  level=level,na.action=na.action,weights=weights)
 for (i in seq(1,dim(newdata)[1])) {
  if (is.na(newdata[i])) {
   if (interval=="none") {
    P[i]<-predict(model,newdata=newdata,interval=interval,
     level=level,na.action=na.action,weights=weights)[i]
    newdata[i]<-P[i]
   }
   else{
    P[i,]<-predict(model,newdata=newdata,interval=interval,
     level=level,na.action=na.action,weights=weights)[i,]
    newdata[i]<-P[i,1]
   }
  }
 }
 P_end<-end(P)[1]*frequency(P)+(end(P)[2]-1) #Convert (time,period) to decimal time
 P<-window(P,end=P_end-1*frequency(P)) #Drop last observation, which is NA
 return(P)
}

Example usage:

library(dyn)
y<-arima.sim(model=list(ar=c(.9)),n=10) #Create AR(1) dependant variable
A<-rnorm(10) #Create independant variables
B<-rnorm(10)
C<-rnorm(10)
Error<-rnorm(10)
y<-y+.5*A+.2*B-.3*C+.1*Error #Add relationship to independant variables 
data=cbind(y,A,B,C)

#Fit linear model
model.dyn<-dyn$lm(y~A+B+C+lag(y,-1),data=data)
summary(model.dyn)

#Forecast linear model
A<-c(A,rnorm(5))
B<-c(B,rnorm(5))
C<-c(C,rnorm(5))
y=window(y,end=end(y)+c(5,0),extend=TRUE)
newdata<-cbind(y,A,B,C)
P1<-ipredict(model.dyn,newdata)
P2<-ipredict(model.dyn,newdata,interval="prediction")

#Plot
plot(y)
lines(P1,col=2)

回答1:


predict.Arima in the core of R has the n.ahead argument to forecast n steps ahead and it seems that that is what you are looking for in conjunction with dyn but predict.dyn does not currently support that functionality. To get that effect one must iteratively call dyn$whatever as you are doing.



来源:https://stackoverflow.com/questions/4856555/iteratively-forecasting-dyn-models

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!