问题
I have a CNN 1d autoencoder which has a dense central layer. I would like to train this Autoencoder and save its model. I would also like to save the decoder part, with this goal: feed some central features (calculated independently) to the trained and loaded decoder, to see what are the images of these independently calculated features through the decoder.
## ENCODER
encoder_input = Input(batch_shape=(None,501,1))
x = Conv1D(256,3, activation='tanh', padding='valid')(encoder_input)
x = MaxPooling1D(2)(x)
x = Conv1D(32,3, activation='tanh', padding='valid')(x)
x = MaxPooling1D(2)(x)
_x = Flatten()(x)
encoded = Dense(32,activation = 'tanh')(_x)
## DECODER (autoencoder)
y = Conv1D(32, 3, activation='tanh', padding='valid')(x)
y = UpSampling1D(2)(y)
y = Conv1D(256, 3, activation='tanh', padding='valid')(y)
y = UpSampling1D(2)(y)
y = Flatten()(y)
y = Dense(501)(y)
decoded = Reshape((501,1))(y)
autoencoder = Model(encoder_input, decoded)
autoencoder.save('autoencoder.hdf5')
## DECODER (independent)
decoder_input = Input(batch_shape=K.int_shape(x)) # import keras.backend as K
y = Conv1D(32, 3, activation='tanh', padding='valid')(decoder_input)
y = UpSampling1D(2)(y)
y = Conv1D(256, 3, activation='tanh', padding='valid')(y)
y = UpSampling1D(2)(y)
y = Flatten()(y)
y = Dense(501)(y)
decoded = Reshape((501,1))(y)
decoder = Model(decoder_input, decoded)
decoder.save('decoder.hdf5')
EDIT:
Just to make sure that it is clear, I first need to JOIN encoded
and the first y
, in the sense that y
has to take encoded
as input. Once this is done, I need a way to load a trained decoder and replace encoded
with some new central features, which I will feed my decoder with.
EDIT following answer:
I implemented the suggestion, see code below
## ENCODER
encoder_input = Input(batch_shape=(None,501,1))
x = Conv1D(256,3, activation='tanh', padding='valid')(encoder_input)
x = MaxPooling1D(2)(x)
x = Conv1D(32,3, activation='tanh', padding='valid')(x)
x = MaxPooling1D(2)(x)
_x = Flatten()(x)
encoded = Dense(32,activation = 'tanh')(_x)
## DECODER (autoencoder)
encoded = Reshape((32,1))(encoded)
y = Conv1D(32, 3, activation='tanh', padding='valid')(encoded)
y = UpSampling1D(2)(y)
y = Conv1D(256, 3, activation='tanh', padding='valid')(y)
y = UpSampling1D(2)(y)
y = Flatten()(y)
y = Dense(501)(y)
decoded = Reshape((501,1))(y)
autoencoder = Model(encoder_input, decoded)
autoencoder.compile(optimizer='adam', loss='mse')
epochs = 10
batch_size = 100
validation_split = 0.2
# train the model
history = autoencoder.fit(x = training, y = training,
epochs=epochs,
batch_size=batch_size,
validation_split=validation_split)
autoencoder.save_weights('autoencoder_weights.h5')
## DECODER (independent)
decoder_input = Input(batch_shape=K.int_shape(encoded)) # import keras.backend as K
y = Conv1D(32, 3, activation='tanh', padding='valid', name='decod_conv1d_1')(decoder_input)
y = UpSampling1D(2, name='decod_upsampling1d_1')(y)
y = Conv1D(256, 3, activation='tanh', padding='valid', name='decod_conv1d_2')(y)
y = UpSampling1D(2, name='decod_upsampling1d_2')(y)
y = Flatten(name='decod_flatten')(y)
y = Dense(501, name='decod_dense1')(y)
decoded = Reshape((501,1), name='decod_reshape')(y)
decoder = Model(decoder_input, decoded)
decoder.save_weights('decoder_weights.h5')
encoder = Model(inputs=encoder_input, outputs=encoded, name='encoder')
features = encoder.predict(training) # features
np.savetxt('features.txt', np.squeeze(features))
predictions = autoencoder.predict(training)
predictions = np.squeeze(predictions)
np.savetxt('predictions.txt', predictions)
Then I open another file and I do
import h5py
import keras.backend as K
def load_weights(model, filepath):
with h5py.File(filepath, mode='r') as f:
file_layer_names = [n.decode('utf8') for n in f.attrs['layer_names']]
model_layer_names = [layer.name for layer in model.layers]
weight_values_to_load = []
for name in file_layer_names:
if name not in model_layer_names:
print(name, "is ignored; skipping")
continue
g = f[name]
weight_names = [n.decode('utf8') for n in g.attrs['weight_names']]
weight_values = []
if len(weight_names) != 0:
weight_values = [g[weight_name] for weight_name in weight_names]
try:
layer = model.get_layer(name=name)
except:
layer = None
if layer is not None:
symbolic_weights = (layer.trainable_weights +
layer.non_trainable_weights)
if len(symbolic_weights) != len(weight_values):
print('Model & file weights shapes mismatch')
else:
weight_values_to_load += zip(symbolic_weights, weight_values)
K.batch_set_value(weight_values_to_load)
## DECODER (independent)
decoder_input = Input(batch_shape=(None,32,1))
y = Conv1D(32, 3, activation='tanh',padding='valid',name='decod_conv1d_1')(decoder_input)
y = UpSampling1D(2, name='decod_upsampling1d_1')(y)
y = Conv1D(256, 3, activation='tanh', padding='valid', name='decod_conv1d_2')(y)
y = UpSampling1D(2, name='decod_upsampling1d_2')(y)
y = Flatten(name='decod_flatten')(y)
y = Dense(501, name='decod_dense1')(y)
decoded = Reshape((501,1), name='decod_reshape')(y)
decoder = Model(decoder_input, decoded)
#decoder.save_weights('decoder_weights.h5')
load_weights(decoder, 'autoencoder_weights.h5')
# Read autoencoder
decoder.summary()
# read encoded features
features = np.loadtxt('features.txt'.format(batch_size, epochs))
features = np.reshape(features, [1500,32,1])
# evaluate loaded model on features
prediction = decoder.predict(features)
autoencoderpredictions = np.loadtxt('predictions.txt'.format(batch_size, epochs))
fig, ax = plt.subplots(5, figsize=(10,20))
for i in range(5):
ax[i].plot(prediction[100*i], color='blue', label='Decoder')
ax[i].plot(autoencoderpredictions[100*i], color='red', label='AE')
ax[i].set_xlabel('Time components', fontsize='x-large')
ax[i].set_ylabel('Amplitude', fontsize='x-large')
ax[i].set_title('Seismogram n. {:}'.format(1500+100*i+1), fontsize='x-large')
ax[i].legend(fontsize='x-large')
plt.subplots_adjust(hspace=1)
plt.close()
prediction
and autoencoderpredictions
do not agree. It seems as if prediction
is just small noise, whereas autoencoder predictions
has reasonable values.
回答1:
You'll need to: (1) save weights of AE (autoencoder); (2) load weights file; (3) deserialize the file and assign only those weights that are compatible with the new model (decoder).
- (1):
.save
does include the weights, but with an extra deserialization step that's spared by using.save_weights
instead. Also,.save
saves optimizer state and model architecture, latter which is irrelevant for your new decoder - (2):
load_weights
by default attempts to assign all saved weights, which won't work
Code below accomplishes (3) (and remedies (2)) as follows:
- Load all weights
- Retrieve loaded weight names and store them in
file_layer_names
(list) - Retrieve current model weight names and store them in
model_layer_names
(list) - Iterate over
file_layer_names
asname
; ifname
is inmodel_layer_names
, append loaded weight with that name toweight_values_to_load
- Assign weights in
weight_values_to_load
to model usingK.batch_set_value
Note that this requires you to name every layer in both AE and decoder models and make them match. It's possible to rewrite this code to brute-force assign sequentially in a try-except
loop, but that's both inefficient and bug-prone.
Usage:
## omitted; use code as in question but name all ## DECODER layers as below
autoencoder.save_weights('autoencoder_weights.h5')
## DECODER (independent)
decoder_input = Input(batch_shape=K.int_shape(x))
y = Conv1D(32, 3, activation='tanh',padding='valid',name='decod_conv1d_1')(decoder_input)
y = UpSampling1D(2, name='decod_upsampling1d_1')(y)
y = Conv1D(256, 3, activation='tanh', padding='valid', name='decod_conv1d_2')(y)
y = UpSampling1D(2, name='decod_upsampling1d_2')(y)
y = Flatten(name='decod_flatten')(y)
y = Dense(501, name='decod_dense1')(y)
decoded = Reshape((501,1), name='decod_reshape')(y)
decoder = Model(decoder_input, decoded)
decoder.save_weights('decoder_weights.h5')
load_weights(decoder, 'autoencoder_weights.h5')
Function:
import h5py
import keras.backend as K
def load_weights(model, filepath):
with h5py.File(filepath, mode='r') as f:
file_layer_names = [n.decode('utf8') for n in f.attrs['layer_names']]
model_layer_names = [layer.name for layer in model.layers]
weight_values_to_load = []
for name in file_layer_names:
if name not in model_layer_names:
print(name, "is ignored; skipping")
continue
g = f[name]
weight_names = [n.decode('utf8') for n in g.attrs['weight_names']]
weight_values = []
if len(weight_names) != 0:
weight_values = [g[weight_name] for weight_name in weight_names]
try:
layer = model.get_layer(name=name)
except:
layer = None
if layer is not None:
symbolic_weights = (layer.trainable_weights +
layer.non_trainable_weights)
if len(symbolic_weights) != len(weight_values):
print('Model & file weights shapes mismatch')
else:
weight_values_to_load += zip(symbolic_weights, weight_values)
K.batch_set_value(weight_values_to_load)
来源:https://stackoverflow.com/questions/58364974/how-to-load-trained-autoencoder-weights-for-decoder