问题
I have DataFrame with MultiIndex columns that looks like this:
# sample data
col = pd.MultiIndex.from_arrays([['one', 'one', 'one', 'two', 'two', 'two'],
['a', 'b', 'c', 'a', 'b', 'c']])
data = pd.DataFrame(np.random.randn(4, 6), columns=col)
data
What is the proper, simple way of selecting only specific columns (e.g. ['a', 'c']
, not a range) from the second level?
Currently I am doing it like this:
import itertools
tuples = [i for i in itertools.product(['one', 'two'], ['a', 'c'])]
new_index = pd.MultiIndex.from_tuples(tuples)
print(new_index)
data.reindex_axis(new_index, axis=1)
It doesn't feel like a good solution, however, because I have to bust out itertools
, build another MultiIndex by hand and then reindex (and my actual code is even messier, since the column lists aren't so simple to fetch). I am pretty sure there has to be some ix
or xs
way of doing this, but everything I tried resulted in errors.
回答1:
It's not great, but maybe:
>>> data
one two
a b c a b c
0 -0.927134 -1.204302 0.711426 0.854065 -0.608661 1.140052
1 -0.690745 0.517359 -0.631856 0.178464 -0.312543 -0.418541
2 1.086432 0.194193 0.808235 -0.418109 1.055057 1.886883
3 -0.373822 -0.012812 1.329105 1.774723 -2.229428 -0.617690
>>> data.loc[:,data.columns.get_level_values(1).isin({"a", "c"})]
one two
a c a c
0 -0.927134 0.711426 0.854065 1.140052
1 -0.690745 -0.631856 0.178464 -0.418541
2 1.086432 0.808235 -0.418109 1.886883
3 -0.373822 1.329105 1.774723 -0.617690
would work?
回答2:
I think there is a much better way (now), which is why I bother pulling this question (which was the top google result) out of the shadows:
data.select(lambda x: x[1] in ['a', 'b'], axis=1)
gives your expected output in a quick and clean one-liner:
one two
a b a b
0 -0.341326 0.374504 0.534559 0.429019
1 0.272518 0.116542 -0.085850 -0.330562
2 1.982431 -0.420668 -0.444052 1.049747
3 0.162984 -0.898307 1.762208 -0.101360
It is mostly self-explaining, the [1]
refers to the level.
回答3:
You can use either, loc
or ix
I'll show an example with loc
:
data.loc[:, [('one', 'a'), ('one', 'c'), ('two', 'a'), ('two', 'c')]]
When you have a MultiIndexed DataFrame, and you want to filter out only some of the columns, you have to pass a list of tuples that match those columns. So the itertools approach was pretty much OK, but you don't have to create a new MultiIndex:
data.loc[:, list(itertools.product(['one', 'two'], ['a', 'c']))]
回答4:
To select all columns named 'a'
and 'c'
at the second level of your column indexer, you can use slicers:
>>> data.loc[:, (slice(None), ('a', 'c'))]
one two
a c a c
0 -0.983172 -2.495022 -0.967064 0.124740
1 0.282661 -0.729463 -0.864767 1.716009
2 0.942445 1.276769 -0.595756 -0.973924
3 2.182908 -0.267660 0.281916 -0.587835
Here you can read more about slicers.
回答5:
ix
and select
are deprecated!
The use of pd.IndexSlice
makes loc
a more preferable option to ix
and select
.
DataFrame.loc with pd.IndexSlice
# Setup
col = pd.MultiIndex.from_arrays([['one', 'one', 'one', 'two', 'two', 'two'],
['a', 'b', 'c', 'a', 'b', 'c']])
data = pd.DataFrame('x', index=range(4), columns=col)
data
one two
a b c a b c
0 x x x x x x
1 x x x x x x
2 x x x x x x
3 x x x x x x
data.loc[:, pd.IndexSlice[:, ['a', 'c']]]
one two
a c a c
0 x x x x
1 x x x x
2 x x x x
3 x x x x
You can alternatively an axis
parameter to loc
to make it explicit which axis you're indexing from:
data.loc(axis=1)[pd.IndexSlice[:, ['a', 'c']]]
one two
a c a c
0 x x x x
1 x x x x
2 x x x x
3 x x x x
MultiIndex.get_level_values
Calling data.columns.get_level_values
to filter with loc
is another option:
data.loc[:, data.columns.get_level_values(1).isin(['a', 'c'])]
one two
a c a c
0 x x x x
1 x x x x
2 x x x x
3 x x x x
This can naturally allow for filtering on any conditional expression on a single level. Here's a random example with lexicographical filtering:
data.loc[:, data.columns.get_level_values(1) > 'b']
one two
c c
0 x x
1 x x
2 x x
3 x x
More information on slicing and filtering MultiIndexes can be found at Select rows in pandas MultiIndex DataFrame.
回答6:
A slightly easier, to my mind, riff on Marc P.'s answer using slice:
import pandas as pd
col = pd.MultiIndex.from_arrays([['one', 'one', 'one', 'two', 'two', 'two'], ['a', 'b', 'c', 'a', 'b', 'c']])
data = pd.DataFrame(np.random.randn(4, 6), columns=col)
data.loc[:, pd.IndexSlice[:, ['a', 'c']]]
one two
a c a c
0 -1.731008 0.718260 -1.088025 -1.489936
1 -0.681189 1.055909 1.825839 0.149438
2 -1.674623 0.769062 1.857317 0.756074
3 0.408313 1.291998 0.833145 -0.471879
As of pandas 0.21 or so, .select is deprecated in favour of .loc.
回答7:
The most straightforward way is with .loc
:
data.loc[:, (['one', 'two'], ['a', 'b'])]
one two
a c a c
0 0.4 -0.6 -0.7 0.9
1 0.1 0.4 0.5 -0.3
2 0.7 -1.6 0.7 -0.8
3 -0.9 2.6 1.9 0.6
Remember that []
and ()
have special meaning when dealing with a MultiIndex
object:
(...) a tuple is interpreted as one multi-level key
(...) a list is used to specify several keys [on the same level]
(...) a tuple of lists refer to several values within a level
When we write (['one', 'two'], ['a', 'b'])
, the first list inside the tuple specifies all the values we want from the 1st level of the MultiIndex
. The second list inside the tuple specifies all the values we want from the 2nd level of the MultiIndex
.
Source: MultiIndex / Advanced Indexing
来源:https://stackoverflow.com/questions/18470323/selecting-columns-from-pandas-multiindex