汉明嵌入简介:http://blog.csdn.net/definewl/article/details/41217441
汉明嵌入:http://blog.csdn.net/yylgg0922/article/details/47284879
汉明距离:http://blog.sina.com.cn/s/blog_663457ed01017bry.html
合集: http://github.com/vd001/Dancing-around-hamming-distance
Dancing-around-hamming-distance
Collection of various code snippets using hamming distance for image retrival.
- http://www.cs.toronto.edu/~norouzi/research/mlh/ Minimal Loss Hashing for Compact Binary Codes.
- http://www.cs.toronto.edu/~norouzi/research/mih/ Fast Exact Search in Hamming Space with Multi-Index Hashing.
- https://github.com/kevinlin311tw/caffe-cvprw15 Deep Learning of Binary Hash Codes.
- http://www.cs.huji.ac.il/~yweiss/SpectralHashing/ Spectral Hashing.
Datases:
- http://groups.csail.mit.edu/vision/TinyImages/
- http://www.cs.toronto.edu/~kriz/cifar.html
- http://www.vision.caltech.edu/Image_Datasets/Caltech101/
- http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
tags: hamming distance, hamming embedding, binary codes, locality sensitive hashing, semantic hashing, min-hash. Efficient hamming distance computation: HammingDistance(x,y) = HammingWeight(x^y) https://en.wikipedia.org/wiki/Hamming_weight#Efficient_implementation http://notabs.org/blcutil/ http://stackoverflow.com/questions/12380478/bits-counting-algorithm-brian-kernighan-in-an-integer-time-complexity https://web.archive.org/web/20100604050922/http://infolab.stanford.edu/~manku/bitcount/bitcount.c http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan https://github.com/mariusmuja/flann/search?utf8=%E2%9C%93&q=hamming https://github.com/mariusmuja/flann/blob/6f1d8f808f2605488c2882ce8fcfa3d5569576bc/doc/references.bib http://cage.ugent.be/~klein/papers/popc-article.pdf https://github.com/mrgloom/metric-tree-demo TODO: 1. Semantic hashing. https://github.com/gynnash/AutoEncoder http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html http://www.cs.toronto.edu/~fritz/absps/sh.pdf http://www.cs.toronto.edu/~amnih/cifar/talks/salakhut_talk.pdf 2. Locality sensitive hashing with hamming distance. http://stackoverflow.com/questions/12952729/how-to-understand-locality-sensitive-hashing Deep learning: https://github.com/BVLC/caffe/wiki/Model-Zoo#deep-learning-of-binary-hash-codes-for-fast-image-retrieval https://github.com/kevinlin311tw/Caffe-DeepBinaryCode https://github.com/kevinlin311tw/caffe-cvprw15 https://www.cs.toronto.edu/~hinton/csc2535/notes/lec8b.pdf http://arxiv.org/pdf/1404.1777v2.pdf https://github.com/kevinlin311tw/Caffe-DeepBinaryCode Binary features (BRIEF, ORB, BRISK): http://www.cs.ubc.ca/~lowe/papers/12mujaCRV.pdf http://infoscience.epfl.ch/record/126376/files/OzuysalFL07.pdf http://frahm.web.unc.edu/files/2014/01/Fast-Organization-of-Large-Photo-Collections.pdf http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Gong_Web_Scale_Photo_2015_CVPR_paper.pdf Presentations: too complicated math, some relations to spectral hashing. https://www.robots.ox.ac.uk/~vgg/rg/slides/binarycodes.pdf https://www.robots.ox.ac.uk/~vgg/rg/ Cosine distance: Approaches different from hamming distance - "Randomly project points to low dimensional bit signatures such that cosine distance is approximately preserved". Perceptive hash: https://github.com/JohannesBuchner/imagehash
来源:https://www.cnblogs.com/vd01/p/5145990.html